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Fourier transform

F (f(x)) =
∫

x∈Rn
f(x)e−iωT xdx = f̂(ω)

F −1(̂f(ω)) =
1

(2π)n

∫
ω∈Rn

f̂(ω)eiωT xdω

Terminology:
Frequency spectrum: f̂(ω) =| f̂(ω) | eiφ(ω)

Fourier spectrum: | f̂(ω) |
Power spectrum: | f̂(ω) |2
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Why Fourier transforms?

Why are we interested in a decomposition of an image into
complex exponential functions?
Sinusoids and cosinusoids are eigenfunctions of convolutions!

eiωt
L
=⇒ A(ω)eiωt

Note: A(ω) is complex (change in magniture and phase).
Thus we can understand what the filter does to the different
frequencies of the image.
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Theorem 2

Convolution in the spatial domain is same as multiplication in the
Fourier (frequency) domain

F (h∗ f) = F (h)F (f)

f→ ∗h → g=h*f f̂→ ĥ → ĝ = ĥ f̂

Usage:
- For analysis and understanding of convolution operators.
- Some filters may be easily represented in the Fourier domain.
- Implementation: when size of the filter is too large it is more

effective to use multiplication in the Fourier domain.
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Convolution

F (h*f) = F (h)F (f)

Proof:

F (h*f)(ω) =
∫

x∈Rn
(
∫

η∈Rn
h(x−η)f(η)dη)e−iωT xdx {rewrite}

=
∫

η∈Rn
(
∫

x∈Rn
h(x−η)e−iωT (x−η)dx)f(η)e−iωT ηdη {with (x−η) = ζ}

=
∫

η∈Rn
(
∫

ζ∈Rn
h(ζ)e−iωT ζdζ)f(η)e−iωT ηdη {separate}

= (
∫

zη∈Rn
h(ζ)e−iωT ζdζ)(

∫
η∈Rn

f(η)e−iωT ηdη = F (h)(ω)F (f)(ω)
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Spatial separability

Given
h(x ,y) = h1(x)h2(y)

(h*f)(x ,y) =
∫

η∈Rn

∫
ζ∈Rn

h(η,ζ)f(x−η,y −ζ)dηdζ

=
∫

η∈Rn
h1(η)(

∫
ζ∈Rn

h2(ζ)f(x−η,y −ζ)dζ)︸ ︷︷ ︸
∗∗∗

dη

*** convolution of a column (fixed value of x) in y -direction
If convolution mask h(x ,y) can be separated as above⇒ 2D
convolution can be performed as a series of 1D convolutions.
Discrete case: If the mask is m2 in size⇒ 2m operations / pixel
instead of m2 operations per pixel.
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In the Fourier domain

f̂ =
∫

ω1∈Rn

∫
ω2∈Rn

f(x ,y)e−i(ω1x1+ω2xx )dx1dx2

=
∫

ω1∈Rn
e−iω1x1(

∫
ω2∈Rn

f(x ,y)e−iω2x2dx2)dx1

A Fourier transform in 2D can always be performed as a series of
two 1D Fourier transforms.
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Applications

Filtering techniques typically modify frequency characteristics:
Enhance edges (increase high frequency)
Remove noise (decrease high frequency)
Smooth (decrease high frequency, increase low frequency)

Observation: Convolution is a spatial operation on an image.

Images can be converted to their frequency component prior to filtering
to facilitate direct manipulation of image frequency characteristics.
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Spatial versus frequency domain

The Fourier Transform converts spatial image data into a frequency
representation. Both representations contain equivalent information.

Spatial Domain Frequency Domain

+ Intuitive Representation - Non-intuitive representation

- Designing filters can be hard + Designing filters often easier.

- Filtering with large kernels may result + Filtering with large kernels can
in long processing times. be performed very quickly

+ Kernels applied directly to spatial data. - Image and Kernel must first be
converted to frequency domain,
modified, then reconverted.
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Discrete Fourier Transform in 2D

f̂(u,v) =
1√
MN

M−1

∑
m=0

N−1

∑
n=0

f(m,n)e−2πi(mu
M + nv

N ) (1)

f(m,n) =
1√
MN

M−1

∑
u=0

N−1

∑
v=0

f̂(u,v)e+2πi(mu
M + nv

N ) (2)

Terminology:
Fourier spectrum: |F (u,v)|=

√
Re2(u,v)+ Im2(u,v)

Phase angle: φ(u,v) = tan−1 Im(u,v)
Re(u,v)

Power spectrum: P(u,v) = |F (u,v)|2 = Re2(u,v)+ Im2(u,v)
The magnitude is simply the peak value, and the phase
determines where the origin is, or where the sinusoid starts.
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Relation continuous/discrete Fourier transform

Continuous
f̂(ω) =

∫
x∈Rn

f(x)e−iωT xdx

Discrete
f̂(u) =

1
√

M
n ∑

x∈In

f(x)e−
2πiuT x

M

Frequency variables are related (in 1D) by

ω =
2πu
M

Note: u assumes values 0...M−1⇒ ω ∈ [0,2π).
By periodic extension, we can map this integral to [−π,π).

Mårten Björkman (CVAP) Discrete Fourier Transform November 13, 2013 11 / 40



More insight (2 pixel wide stripes)

The maximum frequency which can be represented in the spatial
domain are one pixel wide stripes (period=2): ωmax = 2π

1
2 = π

So, 2 pixel wide stripes (period=4) give ω = 2π
1
4 = 1

2ωmax

Plotting magnitude of the Fourier transform:
- Two points are halfway between the center and the edge of the

image, i.e. the represented frequency is half of the maximum.
- One point in the middle shows the DC-value (image mean).
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More insight

If you take the logarithm of the Fourier transform, you see many
minor frequencies. The reason is that since an image can only be
represented by square pixels, the diagonals cannot be
represented without discretization noise.
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Example images and Fourier transforms
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Exercise

Given a simple 4-pixel “image” I(c) = [3,2,2,1], what is its Fourier
Transform F (v)?
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Exercise

Given a simple 4-pixel “image” I(c) = [3,2,2,1], what is its Fourier
Transform F (v)?
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Property I - Separability

f̂(u,v) =
1√
MN

M−1

∑
m=0

N−1

∑
n=0

f(m,n)e−2πi(mu
M + nv

N ) (3)

f̂(u,v) =
1√
M

M−1

∑
m=0

(
1√
N

N−1

∑
n=0

f(m,n)e−2πi nv
n )e−2πi mu

M

f(m,n) =
1√
M

M−1

∑
m=0

(
1√
N

N−1

∑
n=0

f̂(u,v)e2πi nv
n )e2πi mu

M

2D DFT can be implemented as a series of 1D DFTs along each
column, followed by 1D DFTs along each row.

Mårten Björkman (CVAP) Discrete Fourier Transform November 13, 2013 17 / 40



Property II - Linearity

F [a f1(m,n) + b f2(m,n))] = a f̂1(u,v) + b f̂2(u,v)

a f1(m,n) + b f2(m,n)) = F −1
[
a f̂1(u,v) + b f̂2(u,v)

]

You can add two functions (images) or rescale a function, either
before or after computing the Fourier transform. It leads to the
same result.
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Property III - Modulation

If the original function is multiplied with an exponential like the one
below and transformed, it will result in a shift of the origin of the
frequency plane to point (u0,v0).

F
[
f (m,n)e2πi(mu0

M +
nv0
N )

]
= f̂ (u−u0,v −v0)

For (u0,v0) = (M/2,N/2)

e2πi(mu0
M +

nv0
N ) = eπi(m+n) = (−1)m+n

and
f (m,n)(−1)m+n⇐⇒ f̂ (u−M/2,v −N/2)

Conclusion: the origin of the Fourier transform can be moved to
the center by multiplying the original function by (−1)m+n.

Mårten Björkman (CVAP) Discrete Fourier Transform November 13, 2013 19 / 40



Property III - Modulation/Frequency translation

From left: Original image, magnitude of the Fourier spectrum, original
multiplied by 1+2cosωy at a relative frequency of 16, magnitude of
the Fourier spectrum.

Note: 1+2cosωy = 1+eiωy +e−iωy .
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Property IV - Translation

If the image is moved, the Fourier spectrum undergoes a phase
shift, but magnitude of the spectrum remains the same.

F [f(m−m0,n−n0)] = f̂ (u,v)e−2πi(m0u
M +

n0v
N )

|̂f (u,v)e−2πi(m0u
M +

n0v
N )|= |̂f (u,v)|
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Property V - Rotation

Rotation of the original image rotates f̂ by the same angle.

Exercise: Introduce polar coordinates and perform direct substitution.
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Property VI - Scaling

A =

S1
. . .

Sn

 (diagonal)

g(x) = f (S1x1, . . . ,Snxn)

ĝ(ω) =
1

|S1 . . .Sn|
f̂ (

ω1

S1
, . . . ,

ωn

Sn
)

Conclusion: compression in spatial domain is same as expansion
in Fourier domain (and vise versa).
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Property VII - Periodicity

The DFT and its inverse are periodic with period N, for an N x N
image. This means:

f̂ (u,v) = f̂ (u+N,v) = f̂ (u,v +N) = f̂ (u+N,v +N)

This property defines the implied symmetry in the Fourier
spectrum as well as that f̂ repeats itself infinitely.
However, only one period is enough to reconstruct the original
function f .
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Property VIII - Conjugate Symmetry

The Fourier transform satisfies f̂ (u,v) = f̂ ∗(−u,−v) and
|̂f (u,v)|= |̂f (−u,−v)|.
With periodicity and above, we have that f̂ has period N and is
(conjugate) symmetric around the origin.

Thus we don’t need 2N2 (N2 real and N2 imaginary) values to
represent a N×N image in Fourier domain, but N2 if we exploit
the symmetry.
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Wavelength in two dimensions

The wavelength of the sinusoid is: λ = 1√
u2+v2

, where (u,v) are

the frequencies along (r ,c) and the periods are 1/u and 1/v .
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Theorem 3

Multiplication in the spatial domain is same as convolution in the
Fourier domain.

F (hf) = F (h)∗F (f)

Exercise: Prove it!
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Transfer functions

A linear, shift invariant system (such as a filter) is completely
specified by it’s response to an impulse, which is called the
impulse response.
The transfer function H is the Fourier transform of the impulse
response.
Using the convolution theorem to describe the effects of the
system:

g(x ,y) = h(x ,y)∗ f (x ,y)

G(u,v) = H(u,v) ·F (u,v)

Convolution with an impulse function

h(x ,y)∗δ(x ,y) =
∫

∞

−∞

∫
∞

−∞

h(x0,y0)δ(x−x0,y −y0)dx0dy0 = h(x ,y)

results in a “copy” of h(x ,y) to the location of the impulse
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Transfer function examples
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Transfer function examples
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Transfer function examples
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Back to sampling

How many samples are required to describe the given signal
without loss of information?
What signal can be reconstructed given the current sampling rate?
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Sampling Theorem

A signal is band limited if its highest frequency is bounded. This
frequency is called the bandwidth.
The sine/cosine component of the highest frequency determines
the highest “frequency content” of the signal.
If the signal is sampled at a rate equal or greater to than twice its
highest frequency, the original signal can be completely recovered
from it samples (Shannon).
The minimum sampling rate for band limited function is called
Nyquist rate.
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Reconstruction
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Reconstruction

For reconstruction, we need to convolve with a sinc function.
- It is the Fourier transform of the box function.
- It has infinite support.

May be approximated by a Gaussian, cubic or even “tent” function.

Mårten Björkman (CVAP) Discrete Fourier Transform November 13, 2013 36 / 40



Aliasing

If the signal is undersampled, aliasing occurs.
Prevent aliasing by:
increasing sampling rate, or [infeasible]
decreasing highest frequency before sampling. [blurring]
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Parseval’s equality
The total energy contained in an image summed across all (x ,y) is
equal to the total energy of its Fourier Transform summed across all
frequencies. ∫

x∈Rn
f(x)g(x)dx =

1
(2π)n

∫
ω∈Rn

f̂(ω)ĝ∗(ω)dω

Proof: ∫
ω∈Rn

f̂(ω)ĝ∗(ω)dω =
∫

ω∈Rn
f̂(ω)(

∫
x∈Rn

g(x)eiωT xdx)dω

=
∫

x∈Rn
g(x)(

∫
ω∈Rn

f̂(ω)eiωT xdω)︸ ︷︷ ︸
(2π)nf(x)

dx = (2π)n
∫

x∈Rn
f(x)g(x)dx

If f = g then ∫
x∈Rn

f(x)2dx =
1

(2π)n

∫
ω∈Rn

| f̂ |2 dω.
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Summary of good questions

What is the Fourier transform of a convolution? Why is it
important?
What does separability of filters mean?
How do you interpret a point in the Fourier domain in the spatial
domain?
How do you apply a discrete Fourier transform?
What happens to the Fourier transform, if you translate an image?
What happens to the Fourier transform, if you rotate an image?
In what sense is the Fourier transform symmetric?
What does the Sampling Theorem mean in practice?
What can you do to get rid of aliasing in the sampling process?
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Readings

Gonzalez and Woods: Chapter 4
Szeliski: Chapter 3.4
Introduction to Lab 2
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