
Fatshark and Bitsquid
Game engines, game development and design

Rikard Blomberg
-

CTO and Founder of Fatshark AB
-

Board Member and Founder of Bitsquid AB
-

rikard@fatshark.se

mailto:rikard@fatshark.se

Let’s Start with a survey so I get
to know you…

Q: What are you studying – what program
etc…

Q: Do you plan or would you like to work
with computer games?

A good idea if you like
plenty of hardware on
your desk!

How often do you play
computer games?

a) Several times or hours a day

b) Once a day

c) A couple of times a week

d) Less than that, but sometimes

e) Games are not for me – games
are for kids, boys, nerds, etc…

What is your preferred platform?

a) PC or (Mac) or (Linux)

b) Web based

c) Current Gen Consoles (Xbox360, Ps3)

d) Anything from Nintendo

e) Tablet

f) Phone

g) Other… (I bet no one of you even owns a
PsVita – am I wrong?)

Do you know how to program?

a) I am awesome! (John Carmack, Linus Torvalds)

b) I could make a living on it.

c) I know the basics.

d) No, but I know how to use MS Office…

Have you ever made a game?

a) Yes, and it has been released and people
actually pay me for it.

b) Yes, but it is not commercial, I am not a
capitalist pig!

c) I just need to fix those last bugs…

d) I started on a project but then….

e) No – isn’t that what we are supposed to
do in this course?

END OF SURVEY

Thanks

So how did I end up here?
Spent a lot of time playing computer
games and pen-and-paper RPGs

Have always loved games of all sorts.

Also loves “world-building” and
simulations

I started programming when my father
brought this home in 1986.

What is the name of the computer?

Considered myself a good programmer
(even fooled my friends that I was) until I
actually started coding large complex
systems i.e. games…

Actually I became a rather good
programmer around 2006 or so

Now I am back being a n00b… cause
programming is a craftsmanship.

Did I do a lot of Programming?

So, how did I end up here?

 Wanted to become a physicist
- started at F on KTH.

 Started at HHS by a fluke.

 Met Martin Wahlund who was
to become my business partner.
He is now CEO of Fatshark.

Do you remember
this company logo?

How did we start making games?

First game we made was for KTH
Game Awards 2003.

Project page still alive at:
http://excitera.nu/kthga0203/boundless.php

After the competition we started a
company to commercialize the game,
but we never got there…

http://excitera.nu/kthga0203/boundless.php

Things got in the way
To make actually make games that
we wanted to we found out that we
needed:

 Financing

 A balanced team

 Experience

So what happened was:

Consulting, sub-contracting
More common in the game industry
than what you might believe.

Game projects usually have
unbalanced resource requirements
over time.

More programmers are always
needed as you get close to launch.

Grin and Fatshark
Fatshark was started in
collaboration with Grin to
work as a subcontractor on
parts of games or on whole
games.

But eventually bad
things happened:

But Fatshark survived…
(and a new creature emerged)

Bitsquid founded 2009

Tobias Persson Niklas Frykholm

Goal: To create a new high-end game engine, built from the ground to focus
on performance, flexibility and productivity.

Old logo (showing it will get me killed)

A Skunkworks Project
"It is an especially enriched environment
that is intended to help a small group of

individuals design a new idea by escaping
routine organizational procedures.”

Where are we now?
40 man strong studio doing:

 Self published projects

 Publisher projects (work for hire)

 Supporting, continuing development of
released games

Don’t try this at home kids!
Developing a multi-
purpose game engine is
generally not a great
idea.

It was against all
business-logic doing
so… but sometimes you
just have to go with
your gut feeling.

~40 Experienced Developers (and
one inflatable shark) based in central
Stockholm

And we have some really
interesting stuff in the pipe…

(but I can’t tell you about that)

What is a game engine?
A game engine is a system or framework

for creating computer games.

Consist of two parts:

 Tools

 A runtime component

Typically encapsulates platform

differences (Hardware Abstraction)

Why use a game engine? Why not?

 Decrease risk

 Don’t re-invent the wheel

 Increase platform reach

 Decrease cost

 Decrease development time

 I get back to the “not” part…

What game engines are out there?
(it’s a jungle)

 Commercial

 Publisher owned

 Strictly In-house

Unreal (my totally biased description)

 Unreal Engine grew out of Unreal, a first person
shooter.

 Focusing on larger development teams, console
titles and AAA games.

 Has made inroads into the mobile space, targeting
Android and iOS.

 Long list of licensees, and many best-selling AAA
games have been made in the engine.

 Unreal also has a “free” version targeting smaller
developers: UDK

Unity(my totally biased description)

 The Unity Engine is used by over 500 000
game developers.

 Unity supports console development, it is
mostly used for simple 2D games for mobile
phones, PCs and the web.

 Unity has a free version with limited
functionality and a Pro version needed for
serious development which costs $1500 per
seat.

 Has a hugely successful asset store where
developers can trade systems and assets.

Some other engines

Roll your own? Why?

1. You are a technology freak

2. You have some very
special needs

In either case: Expect Pain

 Is both the name of the company (a subsidiary to
Fatshark)
 … and the technology (game engine) being
licensed to a steadily increasing number of game
developers.
 Company currently employs a CEO and 7
developers

The Bitsquid Philosophy

Simplicity

Openness

Flat simple data
structures

Job parallelism

Data driven

Fast

Dynamic

Flexible

Lightweight

How do we make games?

How do we make games?

A wide range of skills
needed

The Fatshark way of making games
Usually fast – for good or bad

Design is done collectively – for good or bad

Ideas are either customer driven or taken from a
backlog of ideas created at certain creative days.

We try to reuse things to decrease risk. It can be
reusing a setting and the art or reusing a gameplay
framework.

Game Design

I am not a “Game Designer”.

My current work mostly concerns running
and managing a company.

But I have some opinions (and they should be
regarded as such).

Ideas
If I got a penny for every unique and fantastic
game idea being pitched…
contact@fatshark.se <xyz@aol.com>

Oct 3

to contact

Your Email - xyz@aol.com

Regarding - general

Your message - Do you guys take game ideas from the

general public? I'm asking because I have some ideas that

I would like to send you guys.

So ideas doesn’t matter???

contact@fatshark.se <xyz@gmail.com>

Apr 8

to contact

Your Email - xyz@gmail.com

Regarding - jobs

Your message - Hi, My name is Robin xyz and I want to

contact you becouse I have an really special game idea.

pls reply if you are intrested in hearing more about it. .

To make a successful game

You need a good idea and and way to get it to
market.

From there - It is 99% about execution!

However – to make an insanely
successful game (…think Minecraft)

You need a brilliant idea.. and some crazy streak
of luck

From there - It is 99% about execution!

No one will be able to tell if an you have a
brilliant idea and luck – so I advice focusing on
what you can influence.

Where to start
Start somewhere at least…

It could be:

 Defining an audience.
 Having that brilliant (oh well … at least good) idea!
 Having a technology that shines in a certain area.
 Imitating that favorite game with just a small twist.
 Getting a high-level-vision from that crazy publisher

Set a vision! Agree on the vision.

Start coding… write that main.cpp (or whatever it is called) now!

Please - make choices – narrow down

Decide on features:

Decide on platforms:

Decide on content:

Decide on preferred distribution and
monetization

– to skip!

– to skip!

– to skip!

 /* Documentation */
Document decisions – if you are more than one
individual!

For other purposes – skip documentation – you are
making a game not an article or a book!
If you like writing – make a blog about your
development instead!

I have never used any single line of documentation written for our
productions. But I have one big regret…

When it comes to code: The main source of the
information about what the code does should be the
code itself.

…I regret that I didn’t take more pictures along
the way, including especially screenshots of all
funny bloopers and bugs created.

“OFFICE” 1

OFFICE 2

OFFICE 3

OFFICE 4

OFFICE 5

Make it playable – NOW!

If you are not making and engine –
and you are not!

Make it playable from day 1 (or at
least week 1)

Get a head start – work like crazy!

Don’t expect help from anyone.
Roll up your sleeves and get dirty.

Don't Stray Too Far From Your Vision!

Iterate
while (game->quality() != AWESOME)

{

 void (*task)(CGame*);

 task = find_possible_improvements(game):

 (*task)(game);

}

Rejoice();

exit(0);

Iterate, iterate, play, play, iterate, play… however I have a
nagging suspicion that this must is the case:

CGame::quality() { return NOT_REALLY_THERE_YET; }

Maybe closer to the truth…
while (game->quality() != AWESOME)

{

 void (*task)(CGame*);

 task = find_possible_improvements(game):

 (*task)(game);

 if(out_of_time() || out_of_money())

 {

 int result = Pray();

 exit(result)

 }

}

Rejoice();

exit(0);

Find a balance between
general/reusable and quick/dirty.

If you make everything according to the
schoolbook or everything prepared for the
next iteration of the game:

- you will never ship…

- actually - you will never be close to shipping.

Find a balance between
general/reusable and quick/dirty.

If you make everything quick and dirty – you
might ship…

…but the release will probably kill you!

This goes for design as well as code.

And remember: Don't Stray Too Far From
Your Vision!

Use external testers/judges
Since you need to work like hell you will lose
perspective.

Bring in external people for feedback and
judgment.

But at the same time – Don't Stray Too Far
From Your Vision!

A bit more formal approach on design…

http://ldcompanion.wordpress.com/

Take a look at Joakim Setterbergs
blog.

Joakim is a lead level designer at
Fatshark who has some
interesting ideas about design.

http://ldcompanion.wordpress.com/

Limitations

As a programmer you will often be the one
highlighting limitations:

• You can only have X AI agents active at any
time.

• The level can only be this big cause of
memory constraints.

Limitations
The most common technology related limitations of today:

• Rendering quality, details, realistic lightning, shadows, refraction, reflection,

transparency.

• Simulation of complex systems – physics, liquids, fire, hair, destruction of

objects and environment.

• Number of agents simulated, complexity of agents.

• Network traffic, network latency, server processing power/c.

• Input quality and latency.

• Number of objects in the simulated world.

Use a “Gameplay Grid” to increase
without adding new systems

 Camera Place Time Controls GUI

Camera

Place

Time

Controls

GUI

Place challenge examples may include platforms that are traversable only
during certain time intervals (time and place), a location in darkness that
limits the view (camera and place), changes in floor traction or a difficult
jump (movement andplace), or a place that imposes restrictions on save
and load functions (gui and place).

Platform diversity is a challenge
Mobile (pads and phones)

Virtual Reality Headsets (Oculus Rift)

Next-gen consoles (PS4 and XboxOne)

Set-top boxes, micro consoles, steambox…

Web based gaming

PC still strong (Mac not so…)

More to come…

Platform diversity
The number of platforms is a technology
challenge.

But even more – it is a design challenge!

What is the potential of cross-platform
gaming?

High-end gaming
on the go?

Sharing the experience of
a mobile game?

Cross platform gaming
Clients needs to be optimized and adapted for
each platform →

 Having a cross platform engine is essential

Data that clients works on needs to be
centralized →

 An infrastructure for handling data is
needed

If we believe in the assumption
that cross-platform games are the
future – data hosting becomes
even more important. What can
we expect from these (not so
small) companies?

Looking in the crystal ball…

End of this presentation

I really hope to get some questions…

