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Image enhancement by filtering

Primary goal: noise removal
Requirement: preserve relevant information
It may be difficult to define “relevant information”, since it depends
on the task, environment, etc.

Approaches:
Noise is identifiable

remove and interpolate
Noise is not identifiable

image averaging, low-pass filtering
median filtering
min/max filtering

Contrast augmentation
high-pass filtering
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Spatial filtering

Use of spatial masks for filtering is called spatial filtering.
May be linear or nonlinear.
Linear filters can be:

Lowpass: eliminate high frequency components such as
characterized by egdes and sharp details in an image.
⇒ Net effect is image blurring.
Highpass: eliminate low frequency components such as slowly
varying characteristics (shadings).
⇒ Net effect is sharpening of edges and other details (also noise).
Bandpass: eliminate outside a given frequency range.
⇒ Combination of the above. Common in practice.

Mårten Björkman (CVAP) Image Enhancement November 15, 2013 3 / 43



Spatial filtering (examples)

Some filters in frequency domain and corresponding spatial filter masks.
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Exercise

Assume you have a filter kernel [1,0,−1]. How does this look like
in the Fourier domain? Is it a lowpass, highpass or bandpass
filter?
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Exercise

Assume you have a filter kernel [1,0,−1]. How does this look like
in the Fourier domain? Is it a lowpass, highpass or bandpass
filter?
Answer: To see this we have to express the filter in continuous
domain, which we can do with Dirac functions.

f (x) = δ(x)−δ(x−2)

To get the Fourier Transform we exploit the sifting property of
Dirac functions.

f̂ (u) =
∫

x
f (x)e−iuxdx = 1−e−2iu = e−iu(eiu−e−iu) = 2ie−iu sin(u)

‖f̂ (u)‖= 2‖sin(u)‖

Since ‖f̂ (0)‖= ‖f̂ (π)‖= 0 and ‖f̂ (π/2)‖= 2, it is a bandpass filter.
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Different kinds of noise

Noise is the result of errors in the image acquisition that result in
pixel values that do not reflect the true intensities of the real scene
(scanning devices, CCD detector, transmission)
Signal independent additive noise (sampling noise)

g = f + ν

Signal dependent multiplicative noise (illumination variations)

g = f + νf = (1 + ν)f

Measurement noise (salt and pepper)
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Linear smoothing - Averaging

Idea: Average over K data points and reduce variance of
uncorrelated noise by factor of K.
Ensemble average:

F1, . . . ,FK → →G

F1, . . . ,Fk represents several almost identical images (several
images of the same static scene).

G(x) =
1
K

K

∑
k=1

Fk (x)

N(µ,σ2) {one image}
N(K µ,K σ

2) {sum of K images}
N(µ,σ2/K ) {average of K images}

+ Excellent method (e.g. with poor cameras)
- Requires time (and static scenes) - not always possible
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Image averaging
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Local spatial averaging / Mean filtering

Let N(x) represent neighborhood of a point x and

G(x) = ∑
η∈N(x)

CηF (x−η)

Often ∑Cη = 1, Example: N = N8,Cη = 1
9 gives

[ 1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

]
Two main problems with mean filtering:

A single pixel can significantly affect the mean value of all the
pixels in its neighborhood (errors are spread).
It blurs edges - a problem if we require sharp edges in the output.
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Local spatial averaging (continue)

Common requirements:
Coefficients should sum up to 1.
Symmetric up/down and left/right.
Center pixel has most influence on output.
Filter should be separable.

These result in:

Cη =

(
∆t
2

1−∆t
∆t
2

)
( ∆t

2 1−∆t ∆t
2 ) =

 ∆t2
4

∆t
2 (1−∆t) ∆t2

4
∆t
2 (1−∆t) (1−∆t)2 ∆t

2 (1−∆t)
∆t2

4
∆t
2 (1−∆t) ∆t2

4



Special case: ∆t = 1
2 gives

 1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16
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Basic idea

Most information in images is concentrated at low frequencies.
Noise is uniformly distributed over all frequencies (white noise).
⇒ Suppress high frequency.
Different filters have different qualities in Fourier space.
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Ideal low pass filter
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Ideal low pass filter
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Butterworth low pass filter
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Butterworth low pass filter (continue)

Mårten Björkman (CVAP) Image Enhancement November 15, 2013 16 / 43



Butterworth low pass filter (continue)
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Good compromise: Gaussian low-pass filter

g(x ,y ;σ
2) =

1
2πσ2 e−(x2+y2)/2σ2

ĝ(u,v ;σ
2) = e−σ2(u2+v2)/2

where (u2 + v2) = squared distance from the origin.
The parameter measures spread of Gaussian curve. Smaller the
value, the larger the cutoff frequency and milder the filtering.
When (x2 + y2) = σ2, the filter is at 0.607 of its maximum value.

Note: Gaussian in spatial domain and Gaussian in frequency.
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Binomial kernels

The filter ( ∆t
2 ,1−∆t , ∆t

2 ) can for ∆t = 1
2 be written

(
1
4
,
1
2
,
1
4

) =
1
4

(1,2,1) =
1
2

(1,1)∗ 1
2

(1,1)

Repeated use of (1,1) kernels gives rise to Pascal’s triangle.
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

1
1/2
1/4
1/8
1/16
1/32
1/64

coefficients normalization
factors

Central limit theorem⇒ kernels approach Gaussian kernels.
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Image averaging: Average vs. Gaussian

Original Average Gaussian
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Anisotropic smoothing

Anisotropic smoothing: smooth differently in different directions.
Idea: smooth pixels based on similarity s(p,q) between pixels.

p′ = ∑q ·s(p,q)

∑s(p,q)

Similarity s(p,q) can be measured in colour, position, etc.
Examples:

s(p,q) = e( p−q
K )2

, s(p,q) =
1

1− (p−q
K )2

Problems: Different kernels at different positions⇒ Impossible to
analyse in frequency space.
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Anisotropic smoothing

Higher values of K gives greater smoothing.
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Non-linear filtering

Nonlinear spatial filters also operate on neighborhoods.
Operations are based directly on pixel values in neighborhood.
They do not explicitly use coefficient values as in filter masks.
Purpose: Incorporate prior knowledge to avoid destructive
behavior, typically at edges and corners.
Basic methods:
- median filtering
- min/max filtering
- selective averaging
- weighted averaging

Mårten Björkman (CVAP) Image Enhancement November 15, 2013 23 / 43



Median filtering

G(m) = mediank∈N(m) F (k)

Properties:
+ Preserves the value in 1D monotonic structures (shading).
+ Preserves the position of 1D step edges.
+ Eliminates local extreme values (e.g. salt-and-pepper).
- Creates painting-like images.
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Median filtering - example

Original med5x5 mean5x5
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Min/max filtering

Suppress bright areas on dark background (or vice versa)

G(m) = min
k∈Nm

F (k)

Properties:
bright areas decrease
isolated bright points disappear
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Sharpening

Purpose: Enhance local contrast, highlight fine details.
Methods:
- Unsharp masking
- High-pass filtering (spectral)
- Differentiation (first and second order derivatives)
Common desirable property:
- Isotropy (rotational invariance)
Common problems:
- Differentiation and high-pass filtering enhance noise
Difference compared to grey-level transformations:
- Spatial variations are taken into account
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Easiest way: unsharp masking

Idea: “subtract out the blur”
Blur image→ subtract from original→ weight→ add to original

g(x ,y) = f (x ,y) + α(f (x ,y)− f̄ (x ,y))
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High-pass filters

Sharpening with a high-pass filter:

G(u,v) = F (u,v) + α(Hhp(u,v)F (u,v))

Quite similar to unsharp masking, but in Fourier domain.
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High-pass filters

Results with ideal (top), Butterworth (middle) and Gaussian (bottom) filters.
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Differentiation

Requirements for a first order derivative operator:
1. zero in flat areas
2. non-zero along ramp signals of constant slope
3. non-zero in the onset and end of a gray-level step or ramp
Requirements for a second order derivative operator:
1. zero in flat areas
2. zero along ramp signals of constant slope
3. non-zero at the onset and end of a gray-level step or ramp
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First and Second order derivative

Basic definition of a first order x-wise derivative operator:

fx = f (x + 1,y)− f (x ,y)

Similarly, a first order y-size derivative fy can be defined.
More common in practice (derivative at x , not x + 0.5):

fx =
1
2

(f (x + 1,y)− f (x−1,y))

Second order x-wise derivative operator:

fxx = f (x + 1,y) + f (x−1,y)−2f (x ,y)
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Derivatives

f 5 5 4 3 2 1 0 0 0 6 0 ... 0 0 7 7 7 7
fx -1 -1 -1 -1 -1 0 0 6 -6 0 ... 0 7 0 0 0

fxx -1 0 0 0 0 1 0 6 -12 6 ... 0 7 -7 0 0
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Derivatives

Along a ramp fx is non-zero, while fxx is zero.
fxx enhances final details than fx (but also enhances noise).
Magnitude of fx can be used to detect edges.
fxx produces two values for every edge (positive and negative).
Sign of fxx tells whether a pixel near an edge is dark or white.
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Examples of differentiation operators

We are interested in filters whose response is independent of the
direction of discontinuities in the image.
Isotropic filters are rotationally invariant: rotating the image and
then applying the filter is the same as applying the filter first and
then rotating the image.
Gradient: ∇f = (fx , fy )

First order, linear, non-isotropic

Gradient magnitude: | ∇f |=
√

f 2
x + f 2

y

First order, non-linear, isotropic
Laplacian: ∇2f = fxx + fyy

2nd order, linear, isotropic
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Laplacian operator

Isotropic: depends only on the distance from origin, not on the angle.
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Laplacian operator

Laplacian in frequency (upper) and spatial (lower) domain.
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Laplacian in action
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Application of the Laplacian operator

Original image (left), application of Laplacian operator (middle), and
subtraction of the Laplacian from the original image (right).
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Image restoration

Image degradation model:

original
degradation

image
available

restoration
restored
image 

oib

Task: Use the image degradation model to restore the original
image as well as possible.
Common degradation mechanisms:

smoothing, imaging defects
defocusing, motion blur
noise (sensor noise, quantization)

Model: linear shift invariant filter; uncorrelated and additive noise.
Reality: non-linear shift dependent degradation; correlated and
non-additive noise.
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Inverse filtering

f → ∗h → g = h ∗ f

f̂ → ĥ → ĝ = ĥ f̂

How to recreate f from g ?
Formally simple. Let

ĥ′ =
1
ĥ
⇒ ĝĥ′ =

ĥf̂
ĥ

= f̂ (inverse filtering)

Problems:
ĥ′ undefined when ĥ(ω) = 0.
Inverse Fourier transform of ĥ′ not necessarily convergent.
Noise enhanced at frequencies where | ĥ(ω) | is small.
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Summary of good questions

What are the differences between lowpass, bandpass and
highpass filters?
What kind of noise can you have?
Why does image averaging work?
Why are ideal lowpass filter rarely used in practice?
What characteristics does a Gaussian filter have?
What is the difference between mean and median filters?
How can you do sharpening?
How can you approximate a first order derivative?
What is a Laplacian?
Why is inverse filtering hard?
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Readings

Gonzalez & Woods: Chapters 3.4 - 3.6, 4.7 - 4.10
Szeliski Chapters 3.2 and 3.3.1
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