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Feature detection

Basic question: How to define features from image data?

Feature-based paradigm: Compute a reduced subset of reliable image
features so that a major part of subsequent processing can be restricted to a
comparably smaller number of features than the number of image pixels.
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Feature detection

Desirable purposes in computer vision:

Matching details of objects between different views for
correspondence, tracking, 3-D reconstruction, computing 3-D motion.

Delimiting the outline of objects in natural scenes

Detecting or delimiting subparts of objects

Computing symmetry axes of elongated objects

Computing image primitives for performing object recognition
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Feature detection

How to define features from image data if the data in reality look like this?

172 143 184 200 180 153 101 101 116 87 63 105 77 71 67
176 141 170 193 176 153 103 102 123 99 67 113 75 82 83
177 153 188 185 173 161 114 83 99 94 71 123 80 85 87
178 175 198 205 200 206 157 109 97 131 119 116 70 73 79
164 164 160 153 134 119 111 95 99 110 115 121 79 48 48
163 133 123 105 80 66 66 81 104 74 55 84 62 55 54
173 118 91 66 62 60 52 76 103 77 57 93 69 76 78
169 123 112 79 113 112 63 63 78 69 55 78 75 81 76
169 135 121 106 110 113 65 68 71 67 72 129 124 113 77
188 160 184 113 80 55 48 61 73 65 61 85 68 50 51
189 211 222 183 151 128 126 134 146 149 139 90 72 57 71
162 170 175 174 173 176 180 177 177 170 164 150 145 146 143

(This is the result of showing the pixel values from the previous image at a
lower resolution, after reducing the image size by a factor of eight.)
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Feature detection

What approach should one take?

Is it up to us as engineers to try to design or somehow figure out
what are good image features?
Would any type of feature detector do?
Design⇒ Experiment⇒ New design⇒ New experiment⇒ ...

Could we try to learn from biology?
Many higher animals use vision as a main source of information to the
surrounding world and solve the vision problem highly effectively.

Is it possible to develop a mathematically based theory for how to
perform feature detection from image data?
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Feature detection

Interestingly, it is possible to address this problem systematically,
by a well-founded theory, referred to as scale-space theory .

Results from this theory are also in good agreement with existing
knowledge about early receptive fields in biological vision.
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Feature detection

If we would like to formulate a theory for early visual operations:

What should it be based on?

What are the constraints?
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Inherent variabilities in image data

Visual stimuli vary substantially on the retina due to geometric
transformations and lighting variations in the environment.

Nevertheless the brain maintains a stable perception of the environment.

Figures from Lindeberg (2013) “A computational theory of visual receptive fields”, Biological Cybernetics.
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Sources to variabilities in real world image data

external illumination

viewing distance

viewing direction

relative motion

spatial sampling

temporal sampling

position in 3-D

orientation in 3-D

motion in 3-D

Figure from Lindeberg (2013) “Generalized axiomatic scale-space theory”, Advances in Imaging and Electron Physics, 178:1-96.
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Receptive fields

Receptive field: Region in the visual field for which a
visual sensor/neuron/operator responds to visual stimuli.

. . . . .

. . . . .

. . . . .

. . . . .

x_1

x_2

Distribution of overlapping receptive fields over space and time.

How should such receptive fields be designed in a principled way?
(in biology / computer vision)

How to achieve invariant responses despite the variabilities in image data?

Figure from Lindeberg (2013) “A computational theory of visual receptive fields”, Biological Cybernetics.
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Covariant receptive fields

Basic requirement: Covariance under image transformations

.

.

optic center

optic center

If the family of receptive fields is not covariant under basic image
transformations, then there will be a systematic error caused by
the mismatch between the backprojected receptive fields.

Figure from Lindeberg (2013) “A computational theory of visual receptive fields”, Biological Cybernetics.
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Basic image transformations

Local linearizations of non-linear image transformations:

scaling transformations caused by objects of different size and at
different distances to the observer

affine transformations modelling image deformations caused by
variations in the viewing direction

Such geometric image transformations are inherent to the image formation
process and must therefore be taken into account when designing vision
system for an unconstrained natural environment.
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Dependency on scale of observation

Even an as “simple” problem as detecting the edges of an object
by derivative approximations may be strongly dependent on
the scale of the image operators:

Notably, qualitatively very different results can be obtained depending on the
spatial extent of the difference operator, where only spatial extents within a
certain scale range give meaningful results for the task.
Figure from Lindeberg (2013) “Generalized axiomatic scale-space theory”, Advances in Imaging and Electron Physics, 178:1-96.
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Multi-scale structure of real-world images

More generally, real-world object are typically composed of
different types of structures at different scales:

crowd
l

person
l

face
l

eye
l

iris
l
...

Figure from Lindeberg (2013) “A computational theory of visual receptive fields”, Biological Cybernetics.
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Multi-scale representation

For a computer vision system that observes an a priori unknown scene,
there is usually no way to know in advance what scales are appropriate
for describing the interesting image structures in the scene.

⇒ Represent the image data at all scales simultaneously.

⇒ Expand the data set over additional dimension(s) using
the scale of the receptive fields as the parameter.

increasing t
coarser

scale
    of
levels

original image

Figure adapted from Lindeberg (1994) Scale-Space Theory in Computer Vision, Springer.
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Multi-scale descriptions

Physics:
Different types of descriptions depending on the scale of analysis

quantum mechanics⇒ particle physics⇒ thermodynamics⇒
solid mechanics⇒ astronomy⇒ relativity theory

Cartography
Maps with different degrees of abstraction depending on scale

building⇒ city⇒ county⇒ country⇒ world

Computer vision
Dynamically varying scale levels must be handled automatically

Tony Lindeberg DD2423: Feature Detection I



Multi-scale maps
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Scale-space representation

Continuum of scale levels: f (x) 7→ L(x ; t) with L(x ; 0) = f (x)

The transformation from a fine scale to a coarser scale must not
introduce new structures not present in the original data.

Formulate a well-founded theory for multi-scale image structures:
Scale-Space Theory

Figure adapted from Witkin (1983) “Scale-space filtering”, Int. Joint Conf. on Art. Intell., 1019–1022.
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Symmetry properties over spatial image domain

Given any image data f , define family of internal representations

L(·; s) = Ts f

over parameter s for family of image operators Ts that satisfies:

Linearity

Ts(a1f1 + a2f2) = a1Tsf1 + b1Tsf2

(as few irreversible decisions as possible, specifically scale-space
properties defined over L transfer to any spatial derivative of L)

Shift invariance

Ts (S∆x f ) = S∆x (Tsf )

with S∆x denoting shift operator (S∆x f )(x) = f (x −∆x)

(visual interpretation of an object should be the same
irrespective of its position in the image plane)
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Symmetry properties over spatial image domain

Semi-group structure over scale s

Ts1Ts2 = Ts1+s2

Scale covariance under scaling transformations x ′ = sx

L′(x ′; s′) = L(x ; s) corresponding to TS(s) S f = S Ts f

(closedness and uniform treatment under scaling transformations)
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Non-creation of structure with increasing scale:
Non-enhancement of local extrema

Require: If at some scale s0 a point x0 ∈ RN is a local maximum (minimum)
for the mapping x 7→ L(x ; s0), then

(∂sL)(x ; s) ≤ 0 at any spatial maximum

(∂sL)(x ; s) ≥ 0 at any spatial minimum

z

x

Implies strong condition on the set of possible smoothing kernels T (·; s)
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Necessity result

Require

(i) linearity

(ii) shift invariance over space

(iii) semi-group property over scale

(iv) sufficient regularity properties over space and scale

(v) non-enhancement of local extrema

⇒ the scale-space representation over a 2-D spatial domain must satisfy

∂sL = 1
2∇

T
x (Σ0∇xL)− δT

0∇xL

for some 2× 2 covariance matrix Σ0 and some 2-D vector δ0
with ∇x = (∂x1 , ∂x2 )T

Proof in Lindeberg (2011) "Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine

scale-space and spatio-temporal scale-space”, Journal of Mathematical Imaging and Vision, 40:1, 36–81.
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Gaussian receptive fields

Require the convolution kernels to be rotationally symmetric

T (x ; s) = g(x ; s) = 1
2πs e−xT x/2s = 1

2πs e−(x2
1 +x2

2 )/2s

with corresponding Gaussian derivative operators

(∂xαg)(x ; s) = (∂xα1
1 xα2

2
g)(x1, x2; s) = (∂xα1

1
ḡ)(x1; s) (∂xα2

2
ḡ)(x2; s)

where

g̃(x1; s) = 1√
2πs

e−x2
1/2s

ḡx1 (x1; s) = − x1
s ḡ(x1; s) = − x1√

2πs3/2 e−x2
1/2s

ḡx1x1 (x1; s) =
(x2

1−s)
s2 ḡ(x1; s) =

(x2
1−s)√

2πs5/2 e−x2
1/2s
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Gaussian scale-space representation

original image s = 1

s = 8 s = 64

Figures from Lindeberg (2009) “Scale-space”, Encyclopedia of Computer Science and Engineering, IV:2495–2504.
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Different image structures at different scales

Dark grey-level blobs (local minima with spatial extent) at multiple scales:

Figures from Lindeberg (1994) Scale-Space Theory in Computer Vision, Springer.
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Gaussian derivative kernels
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can be used as a general basis for expressing image operations
such as feature detection, feature classification, surface shape,
image matching and image-based recognition
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Affine Gaussian receptive fields

Relax rotational symmetry to mirror symmetry T (−x ; s) = T (x ; s)
⇒ affine Gaussian kernels

T (x ; s) = g(x ; Σ) = 1
2π
√

det Σ
e−xT Σ−1x/2

where Σ denotes any symmetric positive semi-definite 2× 2 matrix

Affine scale-space is closed under affine transformations

fL(ξ) = fR(η) where η = A ξ + b

and

L(·; ΣL) = g(·; ΣL) ∗ fL(·), R(·; ΣR) = g(·; ΣR) ∗ fR(·)

imply

L(x ; ΣL) = R(y ; ΣR) where ΣR = A ΣL AT
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Affine Gaussians and directional derivatives

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

-5 0 5

-5

0

5

Affine scale-space used for computing affine invariant image descriptors
for e.g. cues to surface shape, image-based matching and recognition
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Covariance properties

Covariance properties of spatio-temporal receptive fields:

rescalings of image space dimensions

affine transformations of the spatial domain

Allow the vision system to handle

image data acquired with different resolution

image structures of different spatial extent

objects at different distances from the camera

the linear component of perspective deformations
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Biological receptive fields in LGN and V1

∇2g(x , y ; s)
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Figures from Lindeberg (2013) “Invariance of visual operations at the level of receptive fields”, PLOS ONE, e66990:1–33.
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LGN neurons over spatial domain

Most cells approximately circular center-surround

Corresponding scale-space model

hLGN(x1, x2, t ; s, τ) = ±(∂x1x1 + ∂x2x2 ) g(x1, x2; s)

where

I ± determines polarity
I (∂x1x1 + ∂x2x2 ) spatial Laplacian
I g(x1, x2; s) rotationally symmetric spatial Gaussian
I s spatial scale parameter
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Simple cells over spatial domain

Receptive fields oriented in the spatial domain

Idealized receptive field model for the spatial component

hspace(x1, x2; s) = (cosϕ∂x1 + sinϕ∂x2 )m g(x1, x2; Σ)

where

I (cosϕ∂x1 + sinϕ∂x2 ) directional derivative operator
I m order of spatial differentiation
I g(x1, x2; Σ) affine Gaussian kernel
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Gaussian derivatives

The above results state that Gaussian derivatives based on either
rotationally symmetric Gaussian kernels or affine Gaussian kernels
constitute a canonical basis for expressing visual operations.

Such Gaussian derivatives can be computed at any scale and up to
any order N, leading to a so-called multi-scale N-jet representation.

{Lx ,Ly ,Lxx ,Lxy ,Lyy , . . . } at t = t1
{Lx ,Ly ,Lxx ,Lxy ,Lyy , . . . } at t = t2
{Lx ,Ly ,Lxx ,Lxy ,Lyy , . . . } at t = t3

...
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Feature detection from differential invariants

Our next issue concerns how to combine such Gaussian derivatives for
designing feature detectors.

A basic paradigm consists of combining Gaussian derivatives into
differential invariants that are invariant to e.g. rotations.

In the following we will show how this can be done regarding the topics of:

edge detection and ridge detection

interest point detection
(more recent terminology for blob detection and corner detection)

and show applications of computing scale-invariant image descriptors
for image-based matching and object recognition.
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Edge detection: General

Under rather general assumptions about the image formation process:

the world consists of smooth regular surfaces
with different reflectance properties where

a discontinuity in image brightness corresponds to a discontinuity in:

I depth
I surface orientation
I reflectance or
I illumination

Edge-based approach to computer vision:

detect discontinuities in image brightness (edges) and

characterize these with respect to the physical phenomena
that gave rise to them.
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Edge detection in idealized noise free situation

Luminance and second order derivative.

Figures from Watt (1988) Visual Processing: Computational, Psychophysical and Cognitive Research, Lawrence Erlbaum.
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Edge detection in the presence of noise

Noisy luminance and second order derivative.

Figures from Watt (1988) Visual Processing: Computational, Psychophysical and Cognitive Research, Lawrence Erlbaum.
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Why edges?

Edge features constitute important features to humans

Independent of illumination

Easy to detect computationally

Used to form higher level features (lines, curves, corners, etc)

Natural primitives in CAD-like models of man-made objects
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How do edges look in practice?

Idealized models:

RidgeLineRamp edgeStep edge

In practice, edges are blurred and noisy:

Problem: Notion of discontinuity does not exist for discrete data!
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Fundamental problem

Differentiation is ill posed — an arbitrary small perturbation in the input
can lead to arbitrarily large perturbation in the output:

Ex: f (x) = arctan(x) f ′(x) = 1
1+x2

f (x) = arctan(x) + ε sinωx f ′(x) = 1
1+x2 + εω cosωx .

The difference εω cosωx can be arbitrarily large if ω >> 1/ε.
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Noise reduction: Smoothing

Basic idea: Precede differentiation by smoothing.

Trade-off problem:
I increasing amount of smoothing:

F stronger suppression of noise,
F higher distortions of “true” structures

I decreasing amount of smoothing:
F more accurate feature detection,
F higher number of “false positives”.
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Basic methods for edge detection

Linear:

I Differentiation (derivatives)
I High-pass filtering
I Matching with model patterns

Non-linear:

I Fitting of parameterized edge models
I Non-linear diffusion

Common approach:
1 Detect edge points
2 Link these to polygons
3 Abstraction: Fit to model (straight lines, splines, ellipses)
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Examples of abstracted edge descriptors

In right column: Black lines = straight lines, White curves = curved edges

Figures from Lindeberg and Li (1997) “Segmentation and classification of edges using minimum description length approximation

and complementary junction cues”, Computer Vision and Image Understanding, 67(1):88–98.
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Edge attributes and problems

Attributes:

I Position
I Orientation
I Strength
I Diffuseness (width)

Problems:

I Image noise
I Interference (nearby structures at different scales)
I Physical interpretation
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Laplacian “edge detection”

Motivations

For 1-D signals, edges correspond to peaks in the first-order derivative
and to zero-crossings in the second-order derivative

For 2-D signals, the Laplacian operator ∇2L = Lxx + Lyy is a rotationally
symmetric operator that coincides with the second-order derivative along
one-dimensional straight lines

⇒ Attempt to detect edges by zero-crossings of the Laplacian
∇2(g(·; t) ∗ f ) = 0
Proposed by Marr and Hildreth in 1980
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Laplacian operator
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Zero-crossings of the Laplacian
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Laplacian “edge detection”

Major problems:

Zero-crossings of the Laplacian also respond to “false edges”
(corresponding to minima in the derivative response for 1-D structures)

Poor localization for curved edges
(a systematic offset that increases with the curvature of the edge)

⇒ Not in any way a good edge detector
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Gradient based edge detection

Gradient vector ∇L =

(
Lx
Ly

)
=

( ∂L
∂x
∂L
∂y

)
Measure edge strength by gradient magnitude |∇L| =

√
L2

x + L2
y

Convolve image by appropriate kernel prior to derivative computations
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Gradient estimation

Partial derivatives estimated by difference operators:

Lx (x) ≈ L(x+h,y)−L(x−h,y)
2h filter mask:

 0 0 0
−1/2 0 1/2

0 0 0

 for h = 1

Ly (x) ≈ L(x,y+h)−L(x,y−h)
2h filter mask:

 0 1/2 0
0 0 0
0 −1/2 0

 for h = 1

Gradient direction:

θ = arctan Ly
Lx

+ nπ = atan2(Lx ,Ly )
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Accuracy of derivative approximations by
local Taylor expansions

MacLaurin expansions:

f (x + h) = f (x) + hf ′(x) + 1
2 h2f ′′(x) + . . .

f (x − h) = f (x)− hf ′(x) + 1
2 h2f ′′(x) + . . .

By subtracting the second equation from the first we obtain

f ′(x) = f (x+h)−f (x−h)
2h +O(h2)

Higher order derivative approximations can constructed and analysed
in a corresponding manner
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Gradient estimation

original image

horizontal derivative vertical derivative

Tony Lindeberg DD2423: Feature Detection I



Canny edge detection (1986)

Typical problem: If you try to perform edge detection by thresholding on the
edge strength, then the resulting edges may be several pixels wide

1 Convolve image by smoothing kernel

2 Estimate edge strength and edge normal direction

3 Threshold on edge strength and preserve only edge points that
are local extrema of the edge strength in the edge normal direction
(non-maximum suppression implemented by local search)

Canny derived an optimal smoothing kernel for handling trade-off issues in
edge detection and then demonstrated that this kernel can be well
approximated by a Gaussian kernel
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Non-maximum suppression

Tony Lindeberg DD2423: Feature Detection I



Non-maximum suppression
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Edge linking

Link neighboring edge pixels to connected contours:
Each point has strength |∇L| and orientation θ

Algorithm: ∀ pixels

if (|∇L| > threshold) [ and is locally maximum ]

∀ neighbor’s

if (|∇L| of neighbor > threshold) [ and is locally maximum ]

and ( | Θthis −Θneighbor |< threshold)

link these pixels to be connected

Combine with efficient traversal procedure and mechanism for closing gaps.
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Hysteresis thresholding

Problem:
Thresholding on gradient magnitude may lead to fragmented edges:

I Too many maxima due to noise if threshold too low
I Edges may disconnect at weak edge points if threshold too low

Addressed by two thresholds Tlow and Thigh:
1 In first phase, edge points only allows if edge strength > Tlow
2 In second phase, edge segments only preserved if at least some

point on the segment has edge strength > Thigh
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Hysteresis thresholding
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Differential edge detection (Lindeberg 1993)

Non-maximum suppression:

Edge point = point where the gradient magnitude assumes
a maximum in the gradient direction.

This can be expressed in terms of :

the gradient: ∇L = (Lx ,Ly )T , the gradient magnitude:
√

L2
x + L2

y .

the normalized gradient direction: ev = ∇L
|∇L| =

(Lx ,Ly )T
√

L2
x +L2

y

Directional derivative in any direction α eα = (cosα, sinα):
∂α = cosα∂x + sinα∂y

Directional derivative in gradient direction:

∂v =

(
Lx√

L2
x +L2

y
∂x +

Ly√
L2

x +L2
y
∂y

)
with Lv = ∂v L =

√
L2

x + L2
y = |∇L|
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Differential geometric edge definition

Requirements for gradient magnitude to be maximal in gradient direction:{
∂v (Lv ) = 0
∂vv (Lv ) ≤ 0 or

{
Lvv = 0
Lvvv ≤ 0

In terms of coordinates:

Lvv = (cos ∂x + sin ∂y )2L = cos2 α Lxx + 2 cosα sinα Lxy + sin2 α Lyy

=
L2

x
L2

x +L2
y
Lxx + 2 Lx Ly

L2
x +L2

y
Lxy +

L2
y

L2
x +L2

y
Lyy

=
(L2

x Lxx +2Lx Ly Lxy +L2
y Lyy )√

L2
x +L2

y
= 0

Since the denominator is irrelevant, the edges are given by:{
L̃vv = L2

xLxx + 2LxLy Lxy + L2
y Lyy = 0

˜Lvvv = L3
xLxxx + 3L2

xLy Lxxy + 3LxL2
y Lxyy + L3

y Lyyy ≤ 0
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Differential edge detection

Differential edge detection in practice:

1 Convolve image by (discrete) Gaussian kernel

2 Compute partial derivatives up to order three and combine these into the
differential invariants L̃vv and ˜Lvvv at every image point

3 Search for the zero-crossings of L̃vv that satisfy ˜Lvvv < 0
Gives subpixel accuracy and connected edge segments automatically
Avoids issues of orientation estimation and handling as well as edge
tracking in discrete non-maximum suppression

4 Can be combined with either a single low threshold on the gradient
magnitude or hysteresis thresholding using two thresholds
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Differential edge detection
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Summary of good questions I

What is meant by the concept receptive field?

Why is the notion of scale important in image analysis
and computer vision?

What is a scale-space representation? On what basis is it constructed?

What structural requirements are natural to impose on early visual
operations?

What is meant by a Gaussian derivative? How and why are such
operators important for vision?
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Summary of good questions II

Why is edge detection important for image understanding?

Why is edge detection difficult in practice?

What families of methods exist for edge detection?

What information do image gradients provide?

How does the Canny edge detector work?

What is differential edge detection? How does this method compare to
Canny edge detection?

What is hysteresis thresholding?

What should the image derivatives be equal to on edge points?
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Literature for further reading

Lindeberg (2009) “Scale-space”, Encyclopedia of Computer Science and
Engineering, John Wiley and Sons, Volume IV, pages 2495–2504,
http://dx.doi.org/10.1002/9780470050118.ecse609

Preprint available from
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-40202

Lindeberg (1994) “Scale-space theory: A basic tool for analysing structures at
different scales”, J. of Applied Statistics, 21(2), pp. 224–270,
http://dx.doi.org/10.1080/757582976

Preprint available from
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-40216
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