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EL2620 Nonlinear Control

Lecture 14

• Summary and repetition

• Courses in control
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Exam

• Sat Jan 18 2014, 14.00-19.00

• Regular written exam with five problems

• You may bring lecture notes, Glad & Ljung “Reglerteknik” (”basic

control book”), and TEFYMA or BETA

– no other material: textbooks, exercises, calculators etc.

– any other basic control book must be approved by me before

the exam.

• See course homepage for old exams

• Q&A session before the exam: Mon Jan 13 10-12 (see

homepage)
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Question 1
What’s on the exam?

• Nonlinear models: equilibria, phase portaits, linearization and

classification

• Lyapunov stability (local and global), LaSalle

• Small Gain Theorem, Circle Criterion, Passivity Theorem

• Describing functions

• Compensating static nonlinearities

• Exact feedback linearization, input-output linearization, zero dynamics

• Sliding modes, equivalent controls

• Lyapunov based design: back-stepping

• Nonlinear controllability

• Optimal control
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Question 2

What design method should I use in practice?

The answer is highly problem dependent. Possible (learning)

approach:

• Start with the simplest:

– linear methods (loop shaping, state feedback, . . . )

• Evaluate:

– strong nonlinearities (under feedback!)?

– varying operating conditions?

– analyze and simulate with nonlinear model

• Some nonlinearities to compensate for?

– saturations, valves etc

• Is the system generically nonlinear? E.g, ẋ = xu
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Question: Can you repeat nonlinear

controllability?

The system

ẋ = f(x, u)

is controllable if for any x0, x1 there exists T > 0 and

u : [0, T ] → R such that x(0) = x0 and x(T ) = x1.

• Locally controllable if linearization is controllable.

• May be controllable even if linearization not controllable
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Lie Brackets

Lie bracket between vector fields f, g : Rn → R
n is a vector field

defined by

[f, g] =
∂g

∂x
f −

∂f

∂x
g

• Controllability theorem

ẋ = g1(x)u1 + g2(x)u2

is controllable if the Lie bracket tree (together with g1 and g2)

spans Rn for all x

Remark:

– The system can be steered in any direction of the Lie bracket

tree
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The Lie Bracket Tree
[g1, g2]

[g1, [g1, g2]]
[g2, [g1, g2]]

[g1, [g1, [g1, g2]]] [g2, [g1, [g1, g2]]] [g1, [g2, [g1, g2]]] [g2, [g2, [g1, g2]]]
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Question 3

Can a system be proven stable with the Small Gain Theorem and

unstable with the Circle Criterion?

• No, the Small Gain Theorem, Passivity Theorem and Circle

Criterion all provide only sufficient conditions for stability.

• But, if one method does not prove stability, another one may.

• Since they do not provide necessary conditions for stability, none

of them can be used to prove instability.
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Question 4

Can you review the Circle Criterion? What about k1 < 0 < k2?
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The Circle Criterion

y

k1y

k2y f(y)

− 1

k1
− 1

k2

G(iω)

Theorem Consider a feedback loop with y = Gu and

u = −f(y). Assume G(s) is stable and that

k1 ≤ f(y)/y ≤ k2.

If the Nyquist curve of G(s) stays on the correct side of the circle

defined by the points −1/k1 and −1/k2, then the closed-loop

system is BIBO stable.
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The different cases

Stable system G

1. 0 < k1 < k2: Stay outside circle

2. 0 = k1 < k2: Stay to the right of the line Re s = −1/k2

3. k1 < 0 < k2: Stay inside the circle

Other cases: Multiply f and G with −1.

Only Case 1 and 2 studied in lectures. Only G stable studied.

Lecture 14 11



EL2620 2013

Question 6

Please repeat antiwindup
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Tracking PID
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Antiwindup—General State-Space Model

y u∑∑

∑∑ sat
u

  G − KD
y v

s −1

K

  F − KC

C

D

G

F

s −1 C

D

xc

xc

Choose K such that F −KC has stable eigenvalues.
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Question 5

Please repeat Lyapunov theory
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Stability Definitions

An equilibrium point x = 0 of ẋ = f(x) is

locally stable, if for every R > 0 there exists r > 0, such that

‖x(0)‖ < r ⇒ ‖x(t)‖ < R, t ≥ 0

locally asymptotically stable, if locally stable and

‖x(0)‖ < r ⇒ lim
t→∞

x(t) = 0

globally asymptotically stable, if asymptotically stable for all

x(0) ∈ R
n.
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Lyapunov Theorem for Local Stability

Theorem Let ẋ = f(x), f(0) = 0, and 0 ∈ Ω ⊂ R
n. Assume that

V : Ω → R is a C1 function. If

• V (0) = 0

• V (x) > 0, for all x ∈ Ω, x 6= 0

• V̇ (x) ≤ 0 along all trajectories in Ω

then x = 0 is locally stable. Furthermore, if

• V̇ (x) < 0 for all x ∈ Ω, x 6= 0

then x = 0 is locally asymptotically stable.
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Lyapunov Theorem for Global Stability

Theorem Let ẋ = f(x) and f(0) = 0. Assume that V : Rn → R

is a C1 function. If

• V (0) = 0

• V (x) > 0, for all x 6= 0

• V̇ (x) < 0 for all x 6= 0

• V (x) → ∞ as ‖x‖ → ∞

then x = 0 is globally asymptotically stable.
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LaSalle’s Theorem for Global Stability

Theorem: Let ẋ = f(x) and f(0) = 0. If there exists a C
1 function

V : Rn → R such that

(1) V (0) = 0

(2) V (x) > 0 for all x 6= 0

(3) V̇ (x) ≤ 0 for all x

(4) V (x) → ∞ as ‖x‖ → ∞

(5) The only solution of ẋ = f(x) such that V̇ (x) = 0 is x(t) = 0
for all t

then x = 0 is globally asymptotically stable.
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LaSalle’s Invariant Set Theorem

Theorem Let Ω ∈ R
n be a bounded and closed set that is invariant

with respect to

ẋ = f(x).

Let V : Rn → R be a C1 function such that V̇ (x) ≤ 0 for x ∈ Ω.

Let E be the set of points in Ω where V̇ (x) = 0. If M is the largest

invariant set in E, then every solution with x(0) ∈ Ω approaches M
as t → ∞

Remark : a compact set (bounded and closed) is obtained if we e.g.,

consider

Ω = {x ∈ R
n|V (x) ≤ c}

and V is a positive definite function
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Relation to Poincare-Bendixson Theorem

Poincare-Bendixson Any orbit of a continuous 2nd order system that

stays in a compact region of the phase plane approaches its ω-limit

set, which is either a fixed point, a periodic orbit, or several fixed

points connected through homoclinic or heteroclinic orbits

In particular, if the compact region does not contain any fixed point

then the ω-limit set is a limit cycle
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Example: Pendulum with friction

ẋ1 = x2 , ẋ2 = −
g

l
sin x1 −

k

m
x2

V (x) =
g

l
(1− cosx1) +

1

2
x2

2 ⇒ V̇ = −
k

m
x2

2

• We can not prove global asymptotic stability; why?

• The set E = {(x1, x2)|V̇ = 0} is E = {(x1, x2)|x2 = 0}

• The invariant points in E are given by ẋ1 = x2 = 0 and ẋ2 = 0.

Thus, the largest invariant set in E is

M = {(x1, x2)|x1 = kπ, x2 = 0}

• The domain is compact if we consider

Ω = {(x1, x2) ∈ R
2|V (x) ≤ c}

Lecture 14 22



EL2620 2013

• If we e.g., consider Ω : x2
1 + x2

2 ≤ 1 then

M = {(x1, x2)|x1 = 0, x2 = 0} and we have proven

asymptotic stability of the origin.
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Question 6

Please repeat the most important facts about sliding modes.

There are 3 essential parts you need to understand:

1. The sliding manifold

2. The sliding control

3. The equivalent control
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Step 1. The Sliding Manifold S
Aim: we want to stabilize the equilibrium of the dynamic system

ẋ = f(x) + g(x)u, x ∈ R
n, u ∈ R

1

Idea: use u to force the system onto a sliding manifold S of

dimension n− 1 in finite time

S = {x ∈ R
n|σ(x) = 0} σ ∈ R1

and make S invariant

If x ∈ R
2 then S is R1, i.e., a curve in the state-plane (phase plane).

Lecture 14 25



EL2620 2013

Example

ẋ1 = x2(t)

ẋ2 = x1(t)x2(t) + u(t)

Choose S for desired behavior, e.g.,

σ(x) = ax1 + x2 = 0 ⇒ ẋ1 = −ax1(t)

Choose large a: fast convergence along sliding manifold
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Step 2. The Sliding Controller

Use Lyapunov ideas to design u(x) such that S is an attracting

invariant set

Control Lyapunov Function V (x) = 0.5σ2 yields V̇ = σσ̇

For 2nd order system ẋ1 = x2 , ẋ2 = f(x) + g(x)u and

σ = x1 + x2 we get

V̇ = σ (x2 + f(x) + g(x)u) < 0 ⇐ u = −
f(x) + x2 + sgn(σ)

g(x)

Example: f(x) = x1x2, g(x) = 1, σ = x1 + x2, yields

u = −x1x2 − x2 − sgn(x1 + x2)
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Step 3. The Equivalent Control

When trajectory reaches sliding mode, i.e., x ∈ S, then u will chatter

(high frequency switching).

However, an equivalent control ueq(t) that keeps x(t) on S can be

computed from σ̇ = 0 when σ = 0

Example:

σ̇ = ẋ1 + ẋ2 = x2 + x1x2 + ueq = 0 ⇒ ueq = −x2 − x1x2

Thus, the sliding controller will take the system to the sliding manifold

S in finite time, and the equivalent control will keep it on S.
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Note!

Previous years it has often been assumed that the sliding mode

control always is on the form

u = −sgn(σ)

This is OK, but is not completely general (see example)
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Question 7

Can you repeat backstepping?
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Backstepping Design

We are concerned with finding a stabilizing control u(x) for the

system

ẋ = f(x, u)

General Lyapunov control design: determine a Control Lyapunov

function V (x, u) and determine u(x) so that

V (x) > 0 , V̇ (x) < 0 ∀x ∈ R
n

In this course we only consider f(x, u) with a special structure,

namely strict feedback structure
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Strict Feedback Systems

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)x4
...

ẋn = fn(x1, . . . , xn) + gn(x1, . . . , xn)u

where gk 6= 0

Note: x1, . . . , xk do not depend on xk+2, . . . , xn.
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The Backstepping Idea

Given a Control Lyapunov Function V1(x1), with corresponding

control u = φ1(x1), for the system

ẋ1 = f1(x1) + g1(x1)u

find a Control Lyapunov function V2(x1, x2), with corresponding

control u = φ2(x1, x2), for the system

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + u
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The Backstepping Result

Let V1(x1) be a Control Lyapunov Function for the system

ẋ1 = f1(x1) + g1(x1)u

with corresponding controller u = φ(x1).

Then V2(x1, x2) = V1(x1) + (x2 − φ(x1))
2 /2 is a Control

Lyapunov Function for the system

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + u

with corresponding controller

u(x) =
dφ

dx1

(
f(x1)+g(x1)x2

)
−
dV

dx1

g(x1)−(xk−φ(x1))−f2(x1, x2)
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Question 8

Repeat backlash compensation
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Backlash Compensation

• Deadzone

• Linear controller design

• Backlash inverse

Linear controller design: Phase lead compensation

θref

−

e u θoutθinθ̇in1

1 + sT

1

s
K 1+sT2

1+sT1
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• Choose compensation F (s) such that the intersection with the

describing function is removed

F (s) = K 1+sT2

1+sT1

with T1 = 0.5, T2 = 2.0:
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Oscillation removed!
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Question 9

Can you repeat linearization through high gain feedback?
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Inverting Nonlinearities

Compensation of static nonlinearity through inversion:

F (s) f̂−1(·) f(·) G(s)
−

Controller

Should be combined with feedback as in the figure!
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Remark: How to Obtain f−1 from f using

Feedback

−

v uk

s

f(·)

ê

u

f(u)

ê =
(
v − f(u)

)

If k > 0 large and df/du > 0, then ê → 0 and

0 =
(
v − f(u)

)
⇔ f(u) = v ⇔ u = f−1(v)
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Question 10
What should we know about input–output stability?

You should understand and be able to derive/apply

• System gain γ(S) = supu∈L2

‖y‖2
‖u‖2

• BIBO stability

• Small Gain Theorem

• Circle Criterion

• Passivity Theorem
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Question 11

What about describing functions?

Lecture 14 42



EL2620 2013

Idea Behind Describing Function Method

r e u y

−
N.L. G(s)

e(t) = A sinωt gives

u(t) =
∞∑

n=1

√
a2n + b2n sin[nωt+ arctan(an/bn)]

If |G(inω)| ≪ |G(iω)| for n ≥ 2, then n = 1 suffices, so that

y(t) ≈ |G(iω)|
√
a21 + b21 sin[ωt+ arctan(a1/b1) + argG(iω)]
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Definition of Describing Function

The describing function is

N(A, ω) =
b1(ω) + ia1(ω)

A

e(t) u(t)
N.L.

e(t) û1(t)
N(A, ω)

If G is low pass and a0 = 0 then

û1(t) = |N(A, ω)|A sin[ωt+ argN(A, ω)] ≈ u(t)
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Existence of Periodic Solutions

replacements

0 e u y

−
f(·) G(s)

−1/N(A)

A

G(iω)

y = G(iω)u = −G(iω)N(A)y ⇒ G(iω) = −
1

N(A)

The intersections of the curves G(iω) and −1/N(A)
give ω and A for a possible periodic solution.
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QUESTIONS?
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Some Other Courses in Control

• EL2450 Hybrid and Embedded Control Systems, per 3

• EL2520 Control Theory and Practice, Advanced Course, per 4

• EL1820 Modelling of Dynamical Systems, per 1

• EL2745 Principles of Wireless Sensor Networks, per 1

• EL2421 Project Course in Automatic Control, per 2
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EL2450 Hybrid and Embedded Control

Systems

Aim: course on analysis, design and implementation of control

algorithms in networked and embedded systems.

• Period 3, 7.5 cr

• How are control systems realized:

– computer-implementation of control algorithms

– scheduling of real-time software

– control over communication networks

• Lectures, exercises, homework, computer exercises

Contact: Dimos Dimarogonas dimos@ee.kth.se
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EL2745 Principles of Wireless Sensor

Networks

Aim: provide the participants with a basic knowledge of wireless

sensor networks (WSN)

• Period 1, 7.5 cr

• THE INTERNET OF THINGS

– essential tools within communication, control, optimization and

signal processing needed to cope with WSN

– design of practical WSNs

– research topics in WSNs

Contact: Carlo Fischione carlofi@kth.se
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EL2520 Control Theory and Practice,

Advanced Course

Aim: provide an introduction to principles and methods in advanced

control, especially multivariable feedback systems.

• Period 4, 7.5 cr

• Multivariable control:

– linear multivariable systems

– robustness and performance

– synthesis of multivariable controllers: LQG, H2- and

H∞-optimization

– real time optimization: Model Predictive Control (MPC)

• Lectures, exercises, labs, computer exercises

Contact: Mikael Johansson mikaelj@kth.se
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EL2820 Modelling of Dynamic Systems

Aim: teach how to systematically build mathematical models of

technical systems from physical laws and from measured signals.

• Period 1, 6 cr

• Model dynamical systems from

– physics: lagrangian mechanics, electrical circuits etc

– experiments: parametric identification, frequency response

• Computer tools for modeling, identification, and simulation

• Lectures, exercises, labs, computer exercises

Contact: Cristian Rojas, crro@kth.se
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EL2421 Project Course in Control

Aim: provide practical knowledge about modeling, analysis, design,

and implementation of control systems. Give some experience in

project management and presentation.

• Period 2, 15 cr

• “From start to goal...”: apply the theory from other courses

• Team work

• Preparation for Master thesis project

• Project management (lecturers from industry)

• No regular lectures or labs

Contact: Jonas Mårtensson, jonas1@kth.se
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Doing Master Thesis Project at KTH Control

Lab

◦ Theory and practice

◦ Cross-disciplinary

◦ The research edge

◦ Collaboration with leading industry and universities

◦ Get insight in research and development

Hints:

• The topic and the results of your thesis are up to you

• Discuss with professors, lecturers, PhD and MS students

• Check old projects
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Doing PhD Thesis Project at KTH Control Lab

• Intellectual stimuli

• Get paid for studying

• International collaborations and travel

• Competitive

• World-wide job market

• Research (60%), courses (30%),

teaching (10%), fun (100%)

• 4-5 yr’s to PhD (lic after 2-3 yr’s)
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