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10.4

Curve Fitting

Cubic Spline Interpblation

In this section an artist’s drafting aid is used as a physical model for the mathematical
problem of finding a curve that passes through specified points in the plane. The parameters
of the curve are determined by solving a linear system of equations.

Fitting a curve through specified points in the plane is a common problem encountered in
analyzing experimental data, in ascertaining the relations among variables, and in design
work. A ubiquitous application is in the design and description of computer and printer
fonts, such as PostScript™ and TrueType™ fonts (Figure 10.4.1). In Figure 10.4.2
seven points in the x y-plane are displayed, and in Figure 10.4.4 a smooth curve has been
drawn that passes through them. A curve that passes through a set of points in the plane is
said to interpolate those points, and the curve is called an interpolating curve for those
points. The interpolating curve in Figure 10.4.4 was drawn with the aid of a drafting
spline (Figure 10.4.3). This drafting aid consists of a thin, flexible strip of wood or
other material that is bent to pass through the points to be interpolated. Attached sliding
weights hold the spline in position while the artist draws the interpolating curve. The
drafting spline will serve as the physical model for a mathematical theory of interpolation
that we will discuss in this section.

b Figure 10.4.1

T

4 Figure 10.4.2

4 Figure 10.4.3 4 Figure 1044
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Statement of the Problem  Suppose that we are given n points in the xy-plane,

(i, 1), (2, ¥2)5 -+ oy (X, Vi)

which we wish to interpolate with a “well-behaved” curve (Figure 10.4.5). For conve-
nience, we take the points to be equally spaced in the x-direction, although our results
can easily be extended to the case of unequally spaced points. If we let the common
distance between the x-coordinates of the points be 4, then we have

X=X =X3—Xpg=- =X, — X1 =h

Lety = S(x), x1 < x < x, denote the interpolating curve that we seek. We assume that
this curve describes the displacement of a drafting spline that interpolates the n points
when the weights holding down the spline are situated precisely at the n points. Itis
known from linear beam theory that for small displacements, the fourth derivative of the
displacement of a beam is zero along any interval of the x-axis that contains no external
forces acting on the beam. If we treat our drafting spline as a thin beam and realize that

the only external forces acting on it arise from the weights at the n specified points, then:
it follows that

SMx)=0 1)
for values of x lying in the n.— 1 open intervals '

(X1, X2), (x2’ .X'3), ey (xn——ls xn)

between the n points.

» Figure 10.4.5

‘ We also need the result from linear beam theory that states that for a beam acted upo
' only by external forces, the displacement must have two continuous derivatives. In th
case of the interpolating curve y = S(x) constructed by the drafting spline, this mean;

that S(x), §'(x), and §” (x) must be continuous for x; < x < Xp.
The condition that $”(x) be continuous is what causes a drafting spline to produc
a pleasing curve, as it results in continuous curvature. The eye can perceive sudde
changes in curvature—that is, discontinuities in " (x)—but sudden changes in highe
derivatives are not discernible. Thus, the condition that S”(x) be continuous is th
minimal prerequisite for the interpolating curve to be perceptible as a single smooth

curve, rather than as a series of separate curves pieced together.

) To determine the mathematical form of the function S(x), we observe that becaus
‘ S (x) = 0 in the intervals between the specified points, it follows by integrating this
equation four times that S(x) must be a cubic polynomial in x in each such interval, |

In general, however, S(x) will be a different cubic polynomial in each interval, so S(x
must have the form c '

S1(x), x1<x<x
$2(x), X3 <x=<x3

S(x) =

Sn—1(x), X1 <X < Xy




The following exercises are designed to be solved using a technol-
agy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
lgebra software or a scientific calculator with some linear algebra
:apabilities. For each exercise you will need to read the relevant
locumentation for the particular utility you are using. The goal
f these exercises is to provide you with a basic proficiency with
rour technology utility. Once you have mastered the techniques
nthese exercises, you will be able to use your technology utility
osolve many of the problems in the regular exercise sets.

(1. Let (a, b, ¢) be a unit vector normal to the plane ax + by +
7=0,and letr = (x, y, z) be a vector. It can be shown that the
nirror image of the vector r through the above plane has coordi-
wtes ¥y, = (X, Ym, Zm), Where

Xm X
Ym|=M|y
Zm Z
vith
1 0 0 la
M=I-2nmm"={0 1 0|=2|b|la b c]
0o 0 1] - c

a) Show that M? = I and give a physical reason why this must
be so. [Hint: Use the fact that (a, b, ¢) is a unit vector to show
that n’n = 1.]

b) Use a computer to show that det(M) = —1.
¢) The eigenvectors of M satisfy the equation

X

¢
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and therefore correspond to those vectors whose direction is
not affected by a reflection through the plane. Use a computer
to determine the eigenvectors and eigenvalues of M, and then
give a physical argument to support your answer.

T2. A vector v = (x, y, ) is rotated by an angle 6 about an axis
havmg unit vector (a, b, c), thereby forming the rotated vector
Vg = (Xg, YR, Zg). It can be shown that

XR X
Yr| =R |y
ZR z
with
’ 1 0 0 a
R®)=cos(®) |0 1 0|+ (—cos®)|b|[a b c]
0 0 1 c
0 —c b
+ sin(@) | ¢ 0 —a
—b a 0

(a) Useacomputer to show that R(9)R(¢) = R(9 + ¢), and then
give a physical reason why this must be so. Depending on the
sophistication of the computer you are using, you may have
to experiment using different values of a, b, and

c=+1—a2-p?
(b) Show also that R~1(6) = R(—6) and give a physical reason
why this must be so.

(c) Use a computer to show that det(R(8)) = +1.

1011 Equilibrium Temperature Distributions

In this section we will see that the equilibrium temperature distribution within a trapezoidal
plate can be found when the temperatures around the edges of the plate are specified. The
problem is reduced to solving a system of linear equations. Also, an iterative technique for
solving the problem and a “random walk” approach to the problem are described.

Boundary Data  Suppose that the two faces of the thin trapezoidal plate shown in Figure 10.11.1a are
insulated from heat. Suppose that we are also given the temperature along the four edges
of the plate. For example, let the temperature be constant on each edge with values of

¢




606 Chapter 10 Applications of Linear Algebra

The Mean-Value Property

4 Figure 10.11.2

0°, 0°, 1°, and 2°, as in the figure. After a period of time, the temperature inside the
plate will stabilize. Our objective in this section is to determine this equilibrium temper-
ature distribution at the points inside the plate. As we will see, the interior equilibrium
temperature is completely determined by the boundary data—that is, the temperature
along the edges of the plate.

[}

1.00
] Temperature = 1° ,
| 2 |
» Figure 10.11.1 ‘ (@) ®)

The equilibrium temperature distribution can be visualized by the use of curves that
connect points of equal temperature. Such curves are called isotherms of the temperature
distribution. In Figure 10.11.156 we have sketched a few isotherms, using information
we derive later in the chapter.

Although all our calculations will be for the trapezoidal plate illustrated, our tech-
niques generalize easily to a plate of any practical shape. They also generalize to the
problem of finding the temperature within a three-dimensional body. In fact, our “plate”
could be the cross section of some solid object if the flow of heat perpendicular to the
cross section is negligible. For example, Figure 10.11.1 could represent the cross section
of a long dam. The dam is exposed to three different temperatures: the temperature of
the ground at its base, the temperature of the water on one side, and the temperature of
the air on the other side. A knowledge of the temperature distribution inside the dam is
necessary to determine the thermal stresses to which it is subjected.

Next we will consider a certain thermodynamic principle that characterizes the tem-
perature distribution we are seeking. '

P

There are many different ways to obtain a mathematical model for our problem. The

approach we use is based on the following property of equilibrium temperature distri-
butions.

This property is a consequence of certain basic laws of molecular motion, and we will
notattempt to derive it. Basically, this property states that in equilibrium, thermal energy
tends to distribute itself as evenly as possible consistent with the boundary conditions.
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in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. Two integers that have no common factors (except 1) are
said to be relatively prime. Given a positive integer n, let S, =
{a1,a2,as,...,a,}, where a; < ay <a3 < --- < a,, be the set
of all positive integers less than n and relatively prime to n. For
example, if n = 9, then

Sy ={a1, as,a3,...,a6) ={1,2,4,5,7, 8}

(a) Construct a table consisting of n and S, forn =2, 3, ..., 15,
and then compute

iak and (iak> (mod n)
k=1 =1

in each case. Draw a conjecture for n > 15 and prove your
conjecture to be true. [Hint: Use the fact that if a is relatively
prime to n, then n — a is also relatively prime to 7.]

(b) Given a positive integer n and the set S,,, let P, be the m x m

matrix
a1 a a Ano1 Gy ]
a, a3 ag - a a
P, = as as as - a.l [45)
Unl  Gm am—3  Gm-2
La, a a Au—y  Qm—1_|
so that, for example,
1 2 4 5 7 8
2 4 5 7 8 1
Py = 4 5 7 8 1 2
5 7 8 1 2 4
) 7 8 1 2 4 5
' 8 1 2 4 5 7
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Use a computer to compute det(P,) and det(P,)(mod n) for
n=2,3,...,15, and then use these results to construct a
conjecture.

(c) Use the results of part (a) to prove your conjecture to be true.
[Hint: Add the first m — 1 rows of P, to its last row and then
use Theorem 2.2.3.] What do these results imply about the
inverse of P, (mod n)?

T2. Given a positive integer n greater than 1, the number of pos-
itive integers less than n and relatively prime to n is called the
Euler phi function of n and is denoted by ¢(n). For example,
©(6) = 2 since only two positive integers (1 and 5) are less than 6
and have no common factor with 6.

(a) Using a computer, for each value of n = 2,3,...,25 com-
pute and print out all positive integers that are less than n and
relatively prime to n. Then use these integers to determine
the values of ¢(n) forn = 2,3,...,25. Can you discover a
pattern in the results?

(b) Itcanbe shown thatif {p, ps, ps, ...
prime factors of n, then

w=r(-3)(-3)(-5) - (-5)

For example, since {2, 3} are the distinct prime factors of 12,

we have
(12) = 12 IR N PR N
P = 2 3)°

which agrees with the fact that {1, 5, 7, 11} are the only pos-
itive integers less than 12 and relatively prime to 12. Us-
ing a computer, print out all the prime factors of n for n =
2,3,...,25. Then compute ¢(n) using the formula above
and compare it to your results in part (a).

, Pm} are all the distinct

10.16 Genetics

In this section we investigate the propagation of an inherited trait in successive generations
by computing powers of a matrix.

Inheritance Traits

In this section we examine the inheritance of traits in animals or plants. The inherited

trait under consideration is assumed to be governed by a set of two genes, which we
designate by A and a. Under autosomal inheritance each individual in the population
of either gender possesses two of these genes, the possible pairings being designated
AA, Aa, and aa. This pair of genes is called the individual’s genotype, and it determines
how the trait controlled by the genes is manifested in the individual. For example,
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in snapdragons a set of two genes determines the color of the flower. Genotype AA
produces red flowers, genotype Aa produces pink flowers, and genotype aa produces
white flowers. In humans, eye coloration is controlled through autosomal inheritance.
Genotypes AA and Aa have brown eyes, and genotype aa has blue eyes. In this case
we say that gene A dominates gene a, or that gene a is recessive to gene A, because
genotype Aa has the same outward trait as genotype AA.

In addition to autosomal inheritance we will also discuss X-linked inheritance. In
this type of inheritance, the male of the species possesses only one of the two possible
genes (A or a), and the female possesses a pair of the two genes (AA, Aa, or aa). In
humans, color blindness, hereditary baldness, hemophilia, and muscular dystrophy, to
name a few, are traits controlled by X-linked inheritance.

Below we explain the manner in which the genes of the parents are passed on to
their offspring for the two types of inheritance. We construct matrix models that give
the probable genotypes of the offspring in terms of the genotypes of the parents, and

we use these matrix models to follow the genotype distribution of a population through
successive generations.

Autosomal Inheritance  In autosomal inheritance an individual inherits one gene from each of its parents’ pairs
of genes to form its own particular pair. As far as we know, it is a matter of chance
which of the two genes a parent passes on to the offspring. Thus, if one parent is of

; genotype Aa, it is equally likely that the offspring will inherit the A gene or the a gene

| from that parent. If one parent is of genotype aa and the other parent is of genotype Aa,

‘, the offspring will always receive an'a gene from the aa parent and will receive either an

i A gene or an a gene, with equal probability, from the Aa parent. Consequently, each of

ik the offspring has equal probability of being genotype aa or Aa. In Table 1 we list the

i probabilities of the possible genotypes of the offspring for all possible combinations of

ﬂ the genotypes of the parents. .

Table 1

] ' » EXAMPLE 1 Distribution of Genotypes in a ﬁopulétion !

Suppose that a farmer has a large population of plants consisting of some distribution
of all three possible genotypes AA, Aa, and aa. The farmer desires to undertake a
breeding program in which each plant in the population is always fertilized with a plant
of genotype AA and is then replaced by one of its offspring. We want to derive an
expression for the distribution of the three possible genotypes in the population after any 1
number of generations.
Forn=0,1,2,..., letus set

a, = fraction of plants of genotype AA in nth generation
b, = fraction of plants of genotype Aa in nth generation
cn = fraction of plants of genotype aa in nth generation
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10.17 Age-Specific Population Growth

In this section we investigate, using the Leslie matrix model, the growth over time of a
female population that is divided into age classes. We then determine the limiting age
distribution and growth rate of the population.

One of the most common models of population growth used by demographers is the
so-called Leslie model developed in the 1940s. This model describes the growth of the
female portion of a human or animal population. In this model the females are divided
into age classes of equal duration. To be specific, suppose that the maximum age attained
by any female in the population is L years (or some other time unit) and we divide the
population into n age classes. Then each class is L/n years in duration. We label the
age classes according to Table 1.

Table 1

1 [0,L/ n)
2 [L/ n, 2L/ n)

3 [2L/ n, 3L/ n)

n-1 | [((m=2)L/n,(n— DL/ n)
n [(n—1)L/ n, L]

Suppose that we know the number of females in each of the n classes at time ¢ = 0. In
particular, let there be x{o) females in the first class, xéo) females in the second class, and

so forth. With these n numbers we form a column vector: oov
X0
©) s
Xy . s
x© = |72
x©

We call this vector the initial age distribution vector. T

As time progresses, the number of females within each of the n classes changes
because of three biological processes: birth, death, and aging. By describing these three
processes quantitatively, we will see how to project the initial age distribution vector into

the future.
The easiest way to study the aging process is to observe the population at discrete
times—say, to, 11, 2, . . ., I, - . .. The Leslie model requires that the duration between

any two successive observation times be the same as the duration of the age intervals.
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Therefore, we set

(=0

t = L/n
%) =2L/n
th =kL/n

With this assumption, all females in the (i + 1)-st class at time . ; were in the ith class
at time f. :

The birth and death processes between two successive observation times can be
described by means of the following demographic parameters:

a; The average number of daughters
(i=1,2,...,n) born to each female during the
time she is in the ith age class

The fraction of females in the ith
age class that can be expected to
survive and pass into the (i +1)-st
age class

By their definitions, we have that

()a >0 fori=1,2,...,n
i)0<b <1 fori=1,2,...,n—1

Note that we do not allow any b; to equal zero, because then no females would survive
beyond the ith age class. We also assume that at least one a; is positive so that some
births occur. Any age class for which the corresponding value of a; is positive is called
a fertile age class.
We next define the age distribution vector x®) at time # by
X
(k)

X3
x® = |72

x®
where xi(k) is the number of females in the ith age class at time ;. Now, at time #, the

females in the first age class are just those daughters born between times #_; and #.
Thus, we can write

number of number of number of
daughters daughters
number of ‘ daughters g g
females born to born to born to
. = females in + femalesin } +--- females in
in class 1
at time ¢ class 1 class 2 classn
k between times between times between times
L tr—1 and 1, tr—1 and tx—1 and #;
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T1. The methods of Exercise 4 show that for the cat map, IT(p)  Using these eigenvalues and eigenvectors, we can define
is the smallest integer satisfying the equation

Y N 345 1 1
) P=10 1 D=| 2 L g| md P=l145 145
This suggests that one way to determine IT(p) is to compute 0 — 2 2
[1 2] mod p and write C = PDP~!; hence, C" = PD"P~!. Use a computer to
. . ; . show that ‘
starting with n = 1 and stopping when this produces the iden- . ™
tity matrix. Use this idea to compute IT(p) for p = 2,3, ..., 10. Cc" = ‘u ‘n
Compare your results to the formulas given in Exercise 1, if they P
apply. What can you conjecture about
- ) ; where " n
12 TP o (145 (345 1-5) (3++5
W | —— [ ——=) - [— || ——
- when TI(p) is even? ! 24/5 2 245 2
T2. The eigenvalues and eigenvectors for the cat map matrix I 1+V5) (3445 ! 1-/3\(3-4/5 !
C = — —_— —_ — —_—
11 2 2V5 2 )\ 245 2
“=l1 2
a and
re
3 5 3—4/5 n
Al:_tz;/__, M=_‘z£’ o L3+ (35
== T 5
1 1
vi=|14445| vi=11-./3 How can you use these results and your conclusions in Exercise
- — T1 to simplify the method for computing I1(p)?

10.15 Cryptography

| In this section we present a method of encoding and decoding messages. We also examine
modular arithmetic and show how Gaussian elimination can sometimes be used to break an
opponent’s code.

-

Ciphers  The study of encoding and decoding secret messages is called cryptography. Although
secret codes date to the earliest days of written communication, there has been a recent
surge of interest in the subject because of the need to maintain the privacy of information
transmitted over public lines of communication. In the language of cryptography, codes
are called ciphers, uncoded messages are called plaintext, and coded messages are called
ciphertext. The process of converting from plaintext to ciphertext is called enciphering,
and the reverse process of converting from ciphertext to plaintext is called deciphering.
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The simplest ciphers, called substitution ciphers, are those that replace each letter
of the alphabet by a different letter. For example, in the substitution cipher

Plim ABCDE FGHIJ KLMNOPQRSTUVWXYZ
Cpher DEFGHI JKLMNOP QRSTUVWXYZABC

the plaintext letter A is replaced by D, the plaintext letter B by E, and so forth. With
this cipher the plaintext message

ROME WAS NOT BUILT IN A DAY

becomes ‘
URPH ZDV QRW EXLOW LQ D GDB

A d}isadvantage of substitution ciphers is that they preserve the frequencies of individual
letters, making it relatively easy to break the code by statistical methods. One way to
overcome this problem is to divide the plaintext into groups of letters and encipher the
plaintext group by group, rather than one letter at a time. A system of cryptography
in which the plaintext is divided into sets of n letters, each of which is replaced by a
set of n cipher letters, is called a polygraphic system. In this section we will study a
class of polygraphic systems based on matrix transformations. [The ciphers that we will
discuss are called Hill ciphers after Lester S. Hill, who introduced them in two papers:
“Cryptography in an Algebraic Alphabet,” American Mathematical Monthly, 36 (June—
July 1929), pp. 306-312; and “Concerning Certain Linear Transformation Apparatus of
Cryptography,” American Mathematical Monthly, 38 (March 1931), pp. 135-154.]

In the discussion to follow, we assume that each plaintext and ciphertext letter except
Z is assigned the numerical value that specifies its position in the standard alphabet
(Table 1). For reasons that will become clear later, Z is assigned a value of zero.

Table 1

A B CDETFGH 11T JKLMNOPO QRS STUVWIXY Z

1 23 45 6 7 8 9 10111213 1415 16 17 18 19 20 21 22 23 2425 0

In the simplest Hill ciphers, successive pairs of plaintext are transformed into ci-
phertext by the following procedure:

Step 1. Choose a 2 x 2 matrix with integer entries

an a
A= [ 1 12]
a1 ax
to perform the encoding. Certain additional conditions on A will be imposed later.

Step 2. Group successive plaintext letters into pairs, adding an arbitrary “dummy”
letter to-fill out the last pair if the plaintext has an odd number of letters, and replace
each plaintext letter by its numerical value.

Step 3. Successively convert each plaintext pair p; p; into a column vector

p= [P1:|
D2
and form the product Ap. We will call p a plaintext vector and Ap the corresponding

ciphertext vector.
Step 4. Convert each ciphertext vector into its alphabetic equivalent.
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10.3 The Earliest Applications of Linear Algebra

Linear systems can be found in the earliest writings of many ancient civilizations. Int
section we give some examples of the types of problems that they used to solve.

The practical problems of early civilizations included the measurement of land, th
distribution of goods, the tracking of resources such as wheat and cattle, and taxation and

inheritance calculations. Inmany cases, these problems led to linear systems of equation‘s)
since linearity is one of the simplest relationships that can exist among variables. In this
section we present examples from five diverse ancient cultures illustrating how they used =
and solved systems of linear equations. We restrict ourselves to examples before AD,
500. These examples consequently predate the development of the field of algebra by
Islamic/Arab mathematicians, a field that ultimately led in the nineteenth century to the
branch of mathematics now called linear algebra.

» EXAMPLE 1 Egypt (about 1650 B.C)

Problem 40 of the Ahmes Papyrus

Egyptian mathematics. This 5-meter-long papyrus contains 84 short mathematical prob
lems, together with their solutions, and dates from about 1650 B.C. Problem 40 in thi
papyrus is the following:

Let a be the least amount that any man obtains, and let d be the common dif‘ference"
the terms in the arithmetic progression. Then the other four men receive a +d, a +2d
a + 3d, and a + 4d hekats. The two conditions of the problem require that

a+(a+d)+ (a+2d)+ (a+3d) + (a +4d) =100
Ha+2d) +(@+3d) +@+4d)]=a+(a+d)
These equations reduce to the following system of two equations in two unknowns:

) 5a + 10d = 100
lla— 2d= 0

The solution technique described in the papyrus is known as the method of false pos
tion or false assumption. It begins by assuming some convenient value of a (in our ca
a = 1), substituting that value into the second equation, and obtaining d = 11/2. Subs
tutinga = 1 and d = 11/2 into the left-hand side of the first equation gives 60, whereas.




Babylonian clay tablet Ca MLA
1950

IO ST

Chiu Chang Suan Shu in Chinese
characters
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the right-hand side is 100. Adjusting the initial guess for a by multiplying it by 100/60
leads to the correct value a = 5/3. Substituting a = 5/3 into the second equation then
gives d = 55/6, so the quantities of barley received by the five men are 10/6, 65/6,
120/6, 175/6, and 230/6 hekats. This technique of guessing a value of an unknown and
later adjusting it has been used by many cultures throughout the ages.

» EXAMPLE 2 Babylonia (1900-1600 B.C.)

The Old Babylonian Empire flourished in Mesopotamia between 1900 and 1600 B.C.
Many clay tablets containing mathematical tables and problems survive from that period,
one of which (designated Ca MLA 1950) contains the next problem. The statement of
the problem is a bit muddled because of the condition of the tablet, but the diagram and
the solution on the tablet indicate that the problem is as follows:

Let x be the lower width of the trapezoid and y its upper width. The area of the trapezoid
is its height times its average width, so 20 (£32) = 320. Using similar triangles, we
also have g; = ;. The solution on the tablet uses these relations to generate the linear

system

lx+y) =16 @
-y =4

Adding and subtracting these two equations then gives the solution x = 20.and y = 12.

» EXAMPLE 3 China (AD. 263)

The most important treatise in the history of Chinese mathematics is the Chiu Chang
Suan Shu, or “The Nine Chapters of the Mathematical Art.” This treatise, which is a
collection of 246 problems and their solutions, was assembled in its final form by Liu
Hui in AD. 263. Its contents, however, go back to at least the beginning of the Han
dynasty in the second century B.C. The eighth of its nine chapters, entitled “The Way of
Calculating by Arrays,” contains 18 word problems that lead to linear systems in three
to six unknowns. The general solution procedure described is almost identical to the




