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Content

● Project management and build, Maven
● Version control, Git
● Code coverage, JaCoCo
● Profiling, NetBeans
● Static Analyzer, NetBeans  
● Continuous integration, Hudson
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Project Management and Build With 
Maven

Maven Home page:
 http://maven.apache.org/

 
Tutorial, user guide and reference manual: 

http://maven.apache.org/guides/index.html
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Maven, Content

● Why do we need a build tool? What is a 
project management tool?

● Maven architecture
● Pom file
● Using Maven in NetBeans
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Why do we need a build tool?
● All actions (compile, deploy, run, create 

documentation, etc.) must be well-defined and 
reproducible.
– We need to store commands, switches, command 

line arguments, environment variables (like 
classpath), etc.

● All IDEs use a build tool.
– Configured via IDE dialogs instead of editing the 

build tool's script text files.

● NetBeans, and many other IDEs, use Ant for 
building.
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Maven vs Ant
● An ant file is like a program, you specify what to 

do, when to do it and where (in which directory) 
the used files are found.

● With maven you only specify what to do, e.g., 
compile, not how to do it.
– Many common tasks, like compiling, are done by 

default, you do not even need to specify them.

● As a result, a maven script becomes shorter and 
easier to understand than an ant script.

● In particular, the NetBeans ant scripts are very 
long and complex.
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Maven vs Ant (Cont'd)

● Ant forces you to manage all files yourself.
– Manually download all third-party jars your code 

depends on and place them in correct directory.

– Often very cumbersome and time-consuming.

● Maven defines your project's directory 
structure and manages all files in the project.
– Just specify the dependencies and maven 

downloads needed jars and uses them as required.
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What is a project management tool? 

● Maven not only builds the project.
● Also defines project directory structure, which 

tasks to perform and in what order.
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Maven Philosophy
● Maven defines project directory structure.

– Always the same, no configuration needed.

● Maven defines what to do and in which order.
– Always the same, no configuration needed.

● User only defines a unique project name, 
package format (jar, war...) and dependencies 
(third-party products used).
– Much more configuration is of course possible.
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Lifecycles, Phases and Goals

● Maven projects consist of lifecycles, which are 
divided in phases, which are divided in goals.

● There are three lifecycles: default, clean and 
site.
– Default lifecycle creates the application.

– Clean lifecycle removes all files generated by 
maven.

– Site lifecycle generates a web site with project 
documentation.
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Major Phases in Default Lifecycle
● process-resources, Copy resources directory into 

destination directory.

● compile, Compile the source code.

● process-test-resources, Copy resources directory 
into the test destination directory.

● test-compile, Compile the test source code.

● test, Run tests using a suitable unit testing 
framework.

● package, Package compiled code in JAR (or other).

● install, Install the package into the local repository.

● deploy, Copy the package to the remote repository.
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Clean and Site lifecycle

● These lifecycles have only one important 
phase each.
– Clean lifecycle has clean phase.

– Site lifecycle has site phase. 
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Execution

● To run maven, you specify a phase. 
● Phases in the lifecycle of the specified phase 

are executed in order.
● The lifecycle starts from the beginning and 

stops after the specified phase.
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What Happens in Each Phase?

● Each phase executes a set of goals.
● The packaging type decides which goals 

belong to which phase.
– Additional goals can be added manually.

● A goal is actually a piece of Java code, which 
is packaged in a plugin.
– One plugin can define many goals
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Typical Goals
The jar and war packaging types use (at least) the 
following goals.

Phase plugin:goal
process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package jar:jar or war:war

install install:install

deploy deploy:deploy
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Packages are Stored in Repositories

● Maven stores all packaged products (mainly 
jars) in repositories.
– Enables Maven to handle all dependencies since 

needed jars can be downloaded from repositories 
where they are stored.

– Promotes code reuse since local repositories can 
be used to share jars between projects.

● There is a default central repository and a local 
repository will be created.
– Other repositories must be specified as a 

dependency.
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Project Object Model
● A Maven project is described in a Project 

Object Model file, pom.xml .
● The pom describes, at least, a unique name 

for the product and which dependencies it has 
(that is, which third-party products it uses).

● All POMs inherit a parent POM. If the parent is 
not specified it inherits the default POM.
– The used POM, including inherited data is shown 

with the command mvn help:effective-pom

– In NetBeans, open the POM and click 
Effective. 
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POM Generated by NetBeans

● groupId , 
artifactId  and 
version  together 
defines a unique 
name for the 
created archive. 

● packaging  
decides the archive 
format for the 
product.

● name  is the 
project's display 
name. It is used 
mainly in 
generated 
documentation.

<groupId>se.kth.iv1201</groupId>

<artifactId>MyProject</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>war</packaging>

<name>MyProject</name>
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POM Generated by NetBeans (Cont'd)
● A dependency 

defines a package 
our product uses. 

● scope decides 
when the included 
package should  
be available. 
Default is 
compile , which 
means it is always 
available. Here 
we have specified 
provided, which 
means it will not 
be available at 
runtime (since it is 
provided by the 
server).

<dependencies>

  <dependency>

      <groupId>javax</groupId>

      <artifactId>javaee-web-api</artifactId>

      <version>7.0</version>

      <scope>provided</scope>

  </dependency>

</dependencies>
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POM Generated by NetBeans (Cont'd)

● It is not required to specify plugins. Here, the compiler plugin is specified 
because we want to configure it (to use JDK1.7 for Java files and class files).

<plugins>

  <plugin>

    <groupId>org.apache.maven.plugins</groupId>

    <artifactId>maven-compiler-plugin</artifactId>

    <version>3.1</version>

    <configuration>

      <source>1.7</source>

      <target>1.7</target>

    </configuration>

  </plugin>

</plugins>
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Using Maven in NetBeans

● To create a Maven project you should choose Maven 
in the Categories  list.

● Choose correct type of project in the Projects list.



Development Tools 22(63)

Using Maven in NetBeans (Cont'd)

● You can update the POM by editing project properties.
● In particular, The Actions  category allows you to configure the 

items on the right-click menu of the project.
● It is also possible to manually edit the POM.
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Version Control With Git

Git Home page:
 http://gitscm.com/ 

 
Tutorial, book and reference manual:

 http://git-scm.com/documentation
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Git, Content

● Why do we need version control?
● Git architecture
● Important commands
● Using Git in NetBeans
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Why Do We Need a Version Control System (VCS)?

● An unlimited number of people may edit the same files 
at the same time.
– The VCS records concurrent edits and helps resolve conflicts.

● No extra work to share or upload files.
– Files are committed to a shared repository.

● Revert to previous versions if something fails.
– The VCS stores a history with all states of all files.

● Stable versions can be tagged.
– A particular snapshot of the entire repository can be named.

● Different branches of the same code base can be 
maintained without duplicated code.
– Shared parts of files are not duplicated.
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Different Version Control Systems

● CVS (1986) was the system that made version control 
popular. 

– Still used, quite easy to learn, has some serious drawbacks.

● Subversion, SVN (2000) is probably the most used system.

– Used by for example SourceForge, Apache, Google Code.

● Git (2005) is becoming rapidly more adopted.

– Faster than CVS and SVN, no central repository.

● Mercurial, Bazaar and Monotone are other examples.

– All are distributed, like Git but unlike CVS and SVN.
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Git is a Distributed Version Control 
System, DVCS

● All clients fully mirror 
the entire repository.
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Git Stores Files, Not File Updates

● Git stores all content of all files at every commit.
– Stores only a link to last version if a file is not updated .

● This means that nearly all operations are local and also that it is 
possible to work offline.

● Git almost only adds data, it very seldom deletes.
– Nothing is lost.
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Three States
● The Git directory is the file 

repository, including 
metadata like tags and 
versions.

● The working directory is 
where you edit the files.

● The staging area is a file (in 
the git directory) that tells 
what will be in the next 
commit.

● The daily workflow is edit, 
stage, commit. 

– First you must (once) 
create the repository and 
check out files.
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Create a New Repository

● Without IDE, type git init  
in the project's root directory
– Each project will have its own 

repository.

● Using NetBeans you 
right-click on the project and 
choose Versioning> 
Initialize  Git 
Repository ... ,  the 
proposed repository location 
is almost always OK.
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Add Files to the New Repository
● Without IDE, add files with the add command, 

which accepts wildcards, e.g., git  add  *.java

● In NetBeans, all files in the project are added 
when the Git repository is created.
– To add files manually, right-click the file (or directory) 

and choose Git> Add .

● To commit the added files to the repository 
without using an IDE, type git  commit .

● To commit in NetBeans, right-click the project 
and choose Git> Commit ....
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Push to a Remote Repository
● To share files you need a remote, empty, repository.

– Can be hosted for free at for example github.com .

● To push to the remote directory using NetBeans, 
right-click the project and choose Git> Remote> Push
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Push to a Remote Repository 
(Cont'd)

● Then specify the location of your remote 
repository.
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Push to a Remote Repository 
(Cont'd)

● Finally, specify that the 
local master shall be 
pushed to the remote 
master.
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Use an Existing Remote Repository 

● Other team members can now download contents of the created 
repository.

● To do that, choose the menu item
Team> Git> Clone ... 

– Specify remote repository, remote branch and local directory in the 
dialogs that follow.
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Git Daily Workflow

● Now that all team members have the same 
remote repository, the workflow will be as follows.
– Edit/add/delete files. 

– Commit changes to local repository. In NetBeans, 
right click the project and choose Git> Commit . 
Note that this both stages and commits all changes. 
To do this at the command prompt type either git 
commit  -a or git  add  and then git  commit .

– Push/pull to/from remote repository. In NetBeans, 
right-click the project and choose Git> Remote> 
Push .../Pull ....
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There is Much More...

● This was only a tiny part of Git's functionality.
● Git provides a lot of help to branch, tag and 

merge snapshots.
● A good source for further inspiration is the Git 

online book at http://git-scm.com/book .
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Code Coverage With JaCoCo

JaCoCo Home Page:
http://www.eclemma.org/jacoco/

Documentation:
http://www.eclemma.org/jacoco/trunk/doc/
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JaCoCo, Content

● What is a Code Coverage Tool?
● JaCoCo Basics
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What is a Code Coverage Tool?

● Records which parts of the program have been 
executed during a test and generates a report of 
the coverage.

● Visualizes how complete the tests are.
● It is normally not meaningful to strive for 100% 

coverage, getters and setters may be omitted from 
the test.

● We shall, however, make sure all important parts 
of the code are tested.
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JaCoCo 
Basics

<plugin>
  <groupId>org.jacoco</groupId>
  <artifactId>jacoco-maven-plugin</artifactId>
  <version>0.6.0.201210061924</version>
  <executions>
    <execution>
      <goals>
        <goal>prepare-agent</goal>
      </goals>
    </execution>
    <execution>
      <id>report</id>
      <phase>prepare-package</phase>
      <goals>
        <goal>report</goal>
      </goals>
    </execution>
  </executions>
</plugin>            

Add this 
configuration 
to the POM 
to enable 
JaCoCo.
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JaCoCo Basics

● JaCoCo is included in NetBeans.
– Right-click the project and choose Code  Coverage .

– Make sure Collect  and Display  Code  Coverage 
is checked.

– To generate the code coverage report, choose Show 
Report...
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JaCoCo Basics (Cont'd)

● Initially there is nothing to report, click Run 
All  Tests to generate a report.
– For this to work, you must have created tests.
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JaCoCo Basics (Cont'd)

If you open a Java 
source file you will see 
the executed lines 
marked in green and 
those not executed in 
pink.
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Profiling With NetBeans
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Profiling, Content

● Why Profiling?
● How to Profile Using NetBeans.
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Why Profiling?

● A profiler reports memory usage, CPU time, 
thread state and other information about 
program execution.
– Report can be per package, per class, per method, 

etc.

– Either updated live as a running total or a snapshot 
at a specific time.

● This is very important if you want to optimize 
your code.
– Never optimize without knowing what and where is 

the problem.
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How to Profile Using NetBeans

● NetBeans comes with a bundled profiler.
● Before profiling the JDK must be calibrated, the 

profiler must know how long time different Java 
operations, e.g., method call, takes.
– In NetBeans, choose the menu item Profile  →
Advanced  Commands  Run→  Profiler 
Calibration

– Switch off CPU frequency scaling when doing this. 

– Only needed once per JDK.
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How to Profile (Cont'd)

● Right-click the project and choose Profile to 
display the dialog box above.

● To the left you can choose to monitor CPU, 
memory or threads.
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How to Profile (Cont'd)

● The profiler is 
configured in the main 
area.

● Choose sampled or 
instrumented profiling 
depending on how exact 
results you need. 

● Select which classes to 
profile, preferably only 
project classes.
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A Sample Profiler Session
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Static Analyzing With NetBeans
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Static Analyzing, Content

● Why Static Analyzer?
● How to Use NetBeans' Static Analyzer.
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Why Do Static Analysis?

● Static analysis means the code is analyzed without 
executing the program.

● A static analyzer checks for coding mistakes. It can be 
for example bugs, unneccessary code or badly 
formatted code.

● Like the compiler, such a tool helps find coding errors.
● In particular, since a static analyzer checks coding 

style, many of the misstakes it finds will not be found 
by executing the program.
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Static Analysis With NetBeans

● Choose Source  →  
Inspect ... from the 
menu to start the 
static analyzer.

● Choose which analyzes 
to perform. In the 
example below, all 
analyzers will be 
executed.
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Static Analysis With NetBeans (Cont'd)

● Here, the analyzer 
found missing javadoc 
and an if statement 
that can be rewritten as 
below.
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Continuous Integration With Hudson

Hudson Home Page:
http://www.hudson-ci.org/

Documentation, including online book:
http://wiki.eclipse.org/Hudson-ci/documentation
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Continuous Integration, Content

● What is Continuous Integration?
● An Introduction to the Hudson Continuous 

Integration Server.
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What is Continuous Integration (CI)?

● A software development practice where all 
developers frequently integrate new code with 
existing code.

● Each integration is verified by an automated 
build, to detect integration errors as quickly as 
possible.

● The automated build includes tests, code 
coverage reports, repository updates, etc.
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What is a CI Server?

● A continuous integration (CI) server manages all parts 
included in a build.

● Using a CI server all team members perform exactly the 
same tasks on each submit. 

● While developing, team members perform all tests 
locally, in the IDE.

● Immediately when a piece of code is finished, it is 
submitted to the CI server. The CI server runs all checks 
on the entire codebase, publishes the result, updates 
the code repository and deploys the new version.
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Hudson CI Server
● The Hudson CI server can manage all tools and 

perform all tasks covered in this presentation, 
and many more.

● A Hudson plugin is available for NetBeans.
– The plugin is only for communication with the 

Hudson server. Hudson itself is installed separately.

● The image below shows a possible 
configuration of the Hudson plugin. 
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Make Hudson Build the Project

● Right-click the new Hudson 
instance (local in this 
example) and choose New  
Build ... to show the New  
Continuous Build  Dialog. 
(upper image)

● Right-click the new build and 
choose Start  Job to start the 
build. (lower image)

● Again right-click the build and 
choose Open  in Browser to 
show the result.  
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Build Result
● Hudson displays a lot of 

information about to the 
build.

● We can see for example
– Test result (no failures)

– Compiler warnings (none)

– Static analysis results

– Code coverage reports

– Repository status

– Built modules (one stable)
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