
Development Tools

Development Tools 2(63)

Content

● Project management and build, Maven
● Version control, Git
● Code coverage, JaCoCo
● Profiling, NetBeans
● Static Analyzer, NetBeans
● Continuous integration, Hudson

Development Tools 3(63)

Project Management and Build With
Maven

Maven Home page:
 http://maven.apache.org/

Tutorial, user guide and reference manual:

http://maven.apache.org/guides/index.html

Development Tools 4(63)

Maven, Content

● Why do we need a build tool? What is a
project management tool?

● Maven architecture
● Pom file
● Using Maven in NetBeans

Development Tools 5(63)

Why do we need a build tool?
● All actions (compile, deploy, run, create

documentation, etc.) must be well-defined and
reproducible.
– We need to store commands, switches, command

line arguments, environment variables (like
classpath), etc.

● All IDEs use a build tool.
– Configured via IDE dialogs instead of editing the

build tool's script text files.

● NetBeans, and many other IDEs, use Ant for
building.

Development Tools 6(63)

Maven vs Ant
● An ant file is like a program, you specify what to

do, when to do it and where (in which directory)
the used files are found.

● With maven you only specify what to do, e.g.,
compile, not how to do it.
– Many common tasks, like compiling, are done by

default, you do not even need to specify them.

● As a result, a maven script becomes shorter and
easier to understand than an ant script.

● In particular, the NetBeans ant scripts are very
long and complex.

Development Tools 7(63)

Maven vs Ant (Cont'd)

● Ant forces you to manage all files yourself.
– Manually download all third-party jars your code

depends on and place them in correct directory.

– Often very cumbersome and time-consuming.

● Maven defines your project's directory
structure and manages all files in the project.
– Just specify the dependencies and maven

downloads needed jars and uses them as required.

Development Tools 8(63)

What is a project management tool?

● Maven not only builds the project.
● Also defines project directory structure, which

tasks to perform and in what order.

Development Tools 9(63)

Maven Philosophy
● Maven defines project directory structure.

– Always the same, no configuration needed.

● Maven defines what to do and in which order.
– Always the same, no configuration needed.

● User only defines a unique project name,
package format (jar, war...) and dependencies
(third-party products used).
– Much more configuration is of course possible.

Development Tools 10(63)

Lifecycles, Phases and Goals

● Maven projects consist of lifecycles, which are
divided in phases, which are divided in goals.

● There are three lifecycles: default, clean and
site.
– Default lifecycle creates the application.

– Clean lifecycle removes all files generated by
maven.

– Site lifecycle generates a web site with project
documentation.

Development Tools 11(63)

Major Phases in Default Lifecycle
● process-resources, Copy resources directory into

destination directory.

● compile, Compile the source code.

● process-test-resources, Copy resources directory
into the test destination directory.

● test-compile, Compile the test source code.

● test, Run tests using a suitable unit testing
framework.

● package, Package compiled code in JAR (or other).

● install, Install the package into the local repository.

● deploy, Copy the package to the remote repository.

Development Tools 12(63)

Clean and Site lifecycle

● These lifecycles have only one important
phase each.
– Clean lifecycle has clean phase.

– Site lifecycle has site phase.

Development Tools 13(63)

Execution

● To run maven, you specify a phase.
● Phases in the lifecycle of the specified phase

are executed in order.
● The lifecycle starts from the beginning and

stops after the specified phase.

Development Tools 14(63)

What Happens in Each Phase?

● Each phase executes a set of goals.
● The packaging type decides which goals

belong to which phase.
– Additional goals can be added manually.

● A goal is actually a piece of Java code, which
is packaged in a plugin.
– One plugin can define many goals

Development Tools 15(63)

Typical Goals
The jar and war packaging types use (at least) the
following goals.

Phase plugin:goal
process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package jar:jar or war:war

install install:install

deploy deploy:deploy

Development Tools 16(63)

Packages are Stored in Repositories

● Maven stores all packaged products (mainly
jars) in repositories.
– Enables Maven to handle all dependencies since

needed jars can be downloaded from repositories
where they are stored.

– Promotes code reuse since local repositories can
be used to share jars between projects.

● There is a default central repository and a local
repository will be created.
– Other repositories must be specified as a

dependency.

Development Tools 17(63)

Project Object Model
● A Maven project is described in a Project

Object Model file, pom.xml .
● The pom describes, at least, a unique name

for the product and which dependencies it has
(that is, which third-party products it uses).

● All POMs inherit a parent POM. If the parent is
not specified it inherits the default POM.
– The used POM, including inherited data is shown

with the command mvn help:effective-pom

– In NetBeans, open the POM and click
Effective.

Development Tools 18(63)

POM Generated by NetBeans

● groupId ,
artifactId and
version together
defines a unique
name for the
created archive.

● packaging
decides the archive
format for the
product.

● name is the
project's display
name. It is used
mainly in
generated
documentation.

<groupId>se.kth.iv1201</groupId>

<artifactId>MyProject</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>war</packaging>

<name>MyProject</name>

Development Tools 19(63)

POM Generated by NetBeans (Cont'd)
● A dependency

defines a package
our product uses.

● scope decides
when the included
package should
be available.
Default is
compile , which
means it is always
available. Here
we have specified
provided, which
means it will not
be available at
runtime (since it is
provided by the
server).

<dependencies>

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-web-api</artifactId>

 <version>7.0</version>

 <scope>provided</scope>

 </dependency>

</dependencies>

Development Tools 20(63)

POM Generated by NetBeans (Cont'd)

● It is not required to specify plugins. Here, the compiler plugin is specified
because we want to configure it (to use JDK1.7 for Java files and class files).

<plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.1</version>

 <configuration>

 <source>1.7</source>

 <target>1.7</target>

 </configuration>

 </plugin>

</plugins>

Development Tools 21(63)

Using Maven in NetBeans

● To create a Maven project you should choose Maven
in the Categories list.

● Choose correct type of project in the Projects list.

Development Tools 22(63)

Using Maven in NetBeans (Cont'd)

● You can update the POM by editing project properties.
● In particular, The Actions category allows you to configure the

items on the right-click menu of the project.
● It is also possible to manually edit the POM.

Development Tools 23(63)

Version Control With Git

Git Home page:
 http://gitscm.com/

Tutorial, book and reference manual:

 http://git-scm.com/documentation

Development Tools 24(63)

Git, Content

● Why do we need version control?
● Git architecture
● Important commands
● Using Git in NetBeans

Development Tools 25(63)

Why Do We Need a Version Control System (VCS)?

● An unlimited number of people may edit the same files
at the same time.
– The VCS records concurrent edits and helps resolve conflicts.

● No extra work to share or upload files.
– Files are committed to a shared repository.

● Revert to previous versions if something fails.
– The VCS stores a history with all states of all files.

● Stable versions can be tagged.
– A particular snapshot of the entire repository can be named.

● Different branches of the same code base can be
maintained without duplicated code.
– Shared parts of files are not duplicated.

Development Tools 26(63)

Different Version Control Systems

● CVS (1986) was the system that made version control
popular.

– Still used, quite easy to learn, has some serious drawbacks.

● Subversion, SVN (2000) is probably the most used system.

– Used by for example SourceForge, Apache, Google Code.

● Git (2005) is becoming rapidly more adopted.

– Faster than CVS and SVN, no central repository.

● Mercurial, Bazaar and Monotone are other examples.

– All are distributed, like Git but unlike CVS and SVN.

Development Tools 27(63)

Git is a Distributed Version Control
System, DVCS

● All clients fully mirror
the entire repository.

Development Tools 28(63)

Git Stores Files, Not File Updates

● Git stores all content of all files at every commit.
– Stores only a link to last version if a file is not updated .

● This means that nearly all operations are local and also that it is
possible to work offline.

● Git almost only adds data, it very seldom deletes.
– Nothing is lost.

Development Tools 29(63)

Three States
● The Git directory is the file

repository, including
metadata like tags and
versions.

● The working directory is
where you edit the files.

● The staging area is a file (in
the git directory) that tells
what will be in the next
commit.

● The daily workflow is edit,
stage, commit.

– First you must (once)
create the repository and
check out files.

Development Tools 30(63)

Create a New Repository

● Without IDE, type git init
in the project's root directory
– Each project will have its own

repository.

● Using NetBeans you
right-click on the project and
choose Versioning>
Initialize Git
Repository ... , the
proposed repository location
is almost always OK.

Development Tools 31(63)

Add Files to the New Repository
● Without IDE, add files with the add command,

which accepts wildcards, e.g., git add *.java

● In NetBeans, all files in the project are added
when the Git repository is created.
– To add files manually, right-click the file (or directory)

and choose Git> Add .

● To commit the added files to the repository
without using an IDE, type git commit .

● To commit in NetBeans, right-click the project
and choose Git> Commit

Development Tools 32(63)

Push to a Remote Repository
● To share files you need a remote, empty, repository.

– Can be hosted for free at for example github.com .

● To push to the remote directory using NetBeans,
right-click the project and choose Git> Remote> Push

Development Tools 33(63)

Push to a Remote Repository
(Cont'd)

● Then specify the location of your remote
repository.

Development Tools 34(63)

Push to a Remote Repository
(Cont'd)

● Finally, specify that the
local master shall be
pushed to the remote
master.

Development Tools 35(63)

Use an Existing Remote Repository

● Other team members can now download contents of the created
repository.

● To do that, choose the menu item
Team> Git> Clone ...

– Specify remote repository, remote branch and local directory in the
dialogs that follow.

Development Tools 36(63)

Git Daily Workflow

● Now that all team members have the same
remote repository, the workflow will be as follows.
– Edit/add/delete files.

– Commit changes to local repository. In NetBeans,
right click the project and choose Git> Commit .
Note that this both stages and commits all changes.
To do this at the command prompt type either git
commit -a or git add and then git commit .

– Push/pull to/from remote repository. In NetBeans,
right-click the project and choose Git> Remote>
Push .../Pull

Development Tools 37(63)

There is Much More...

● This was only a tiny part of Git's functionality.
● Git provides a lot of help to branch, tag and

merge snapshots.
● A good source for further inspiration is the Git

online book at http://git-scm.com/book .

Development Tools 38(63)

Code Coverage With JaCoCo

JaCoCo Home Page:
http://www.eclemma.org/jacoco/

Documentation:
http://www.eclemma.org/jacoco/trunk/doc/

Development Tools 39(63)

JaCoCo, Content

● What is a Code Coverage Tool?
● JaCoCo Basics

Development Tools 40(63)

What is a Code Coverage Tool?

● Records which parts of the program have been
executed during a test and generates a report of
the coverage.

● Visualizes how complete the tests are.
● It is normally not meaningful to strive for 100%

coverage, getters and setters may be omitted from
the test.

● We shall, however, make sure all important parts
of the code are tested.

Development Tools 41(63)

JaCoCo
Basics

<plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.6.0.201210061924</version>
 <executions>
 <execution>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 <execution>
 <id>report</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Add this
configuration
to the POM
to enable
JaCoCo.

Development Tools 42(63)

JaCoCo Basics

● JaCoCo is included in NetBeans.
– Right-click the project and choose Code Coverage .

– Make sure Collect and Display Code Coverage
is checked.

– To generate the code coverage report, choose Show
Report...

Development Tools 43(63)

JaCoCo Basics (Cont'd)

● Initially there is nothing to report, click Run
All Tests to generate a report.
– For this to work, you must have created tests.

Development Tools 44(63)

JaCoCo Basics (Cont'd)

If you open a Java
source file you will see
the executed lines
marked in green and
those not executed in
pink.

Development Tools 45(63)

Profiling With NetBeans

Development Tools 46(63)

Profiling, Content

● Why Profiling?
● How to Profile Using NetBeans.

Development Tools 47(63)

Why Profiling?

● A profiler reports memory usage, CPU time,
thread state and other information about
program execution.
– Report can be per package, per class, per method,

etc.

– Either updated live as a running total or a snapshot
at a specific time.

● This is very important if you want to optimize
your code.
– Never optimize without knowing what and where is

the problem.

Development Tools 48(63)

How to Profile Using NetBeans

● NetBeans comes with a bundled profiler.
● Before profiling the JDK must be calibrated, the

profiler must know how long time different Java
operations, e.g., method call, takes.
– In NetBeans, choose the menu item Profile →
Advanced Commands Run→ Profiler
Calibration

– Switch off CPU frequency scaling when doing this.

– Only needed once per JDK.

Development Tools 49(63)

How to Profile (Cont'd)

● Right-click the project and choose Profile to
display the dialog box above.

● To the left you can choose to monitor CPU,
memory or threads.

Development Tools 50(63)

How to Profile (Cont'd)

● The profiler is
configured in the main
area.

● Choose sampled or
instrumented profiling
depending on how exact
results you need.

● Select which classes to
profile, preferably only
project classes.

Development Tools 51(63)

A Sample Profiler Session

Development Tools 52(63)

Static Analyzing With NetBeans

Development Tools 53(63)

Static Analyzing, Content

● Why Static Analyzer?
● How to Use NetBeans' Static Analyzer.

Development Tools 54(63)

Why Do Static Analysis?

● Static analysis means the code is analyzed without
executing the program.

● A static analyzer checks for coding mistakes. It can be
for example bugs, unneccessary code or badly
formatted code.

● Like the compiler, such a tool helps find coding errors.
● In particular, since a static analyzer checks coding

style, many of the misstakes it finds will not be found
by executing the program.

Development Tools 55(63)

Static Analysis With NetBeans

● Choose Source →
Inspect ... from the
menu to start the
static analyzer.

● Choose which analyzes
to perform. In the
example below, all
analyzers will be
executed.

Development Tools 56(63)

Static Analysis With NetBeans (Cont'd)

● Here, the analyzer
found missing javadoc
and an if statement
that can be rewritten as
below.

Development Tools 57(63)

Continuous Integration With Hudson

Hudson Home Page:
http://www.hudson-ci.org/

Documentation, including online book:
http://wiki.eclipse.org/Hudson-ci/documentation

Development Tools 58(63)

Continuous Integration, Content

● What is Continuous Integration?
● An Introduction to the Hudson Continuous

Integration Server.

Development Tools 59(63)

What is Continuous Integration (CI)?

● A software development practice where all
developers frequently integrate new code with
existing code.

● Each integration is verified by an automated
build, to detect integration errors as quickly as
possible.

● The automated build includes tests, code
coverage reports, repository updates, etc.

Development Tools 60(63)

What is a CI Server?

● A continuous integration (CI) server manages all parts
included in a build.

● Using a CI server all team members perform exactly the
same tasks on each submit.

● While developing, team members perform all tests
locally, in the IDE.

● Immediately when a piece of code is finished, it is
submitted to the CI server. The CI server runs all checks
on the entire codebase, publishes the result, updates
the code repository and deploys the new version.

Development Tools 61(63)

Hudson CI Server
● The Hudson CI server can manage all tools and

perform all tasks covered in this presentation,
and many more.

● A Hudson plugin is available for NetBeans.
– The plugin is only for communication with the

Hudson server. Hudson itself is installed separately.

● The image below shows a possible
configuration of the Hudson plugin.

Development Tools 62(63)

Make Hudson Build the Project

● Right-click the new Hudson
instance (local in this
example) and choose New
Build ... to show the New
Continuous Build Dialog.
(upper image)

● Right-click the new build and
choose Start Job to start the
build. (lower image)

● Again right-click the build and
choose Open in Browser to
show the result.

Development Tools 63(63)

Build Result
● Hudson displays a lot of

information about to the
build.

● We can see for example
– Test result (no failures)

– Compiler warnings (none)

– Static analysis results

– Code coverage reports

– Repository status

– Built modules (one stable)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

