

Microcontrollers

-Definition, Basics and Trends

Anders Pettersson Technical Marketing Manager Microcontrollers Nordic and Baltic

Agenda 2

Presentation Section

Time

Speaker

Anders Pettersson

Definition of a Microcontroller 10:30

Blockdiagram of a generic MCU and Core

Bus system

Architecture

Production Technology

How we think when we design a MCU

Future

Q & A 11:45

After the session you should have learnt..

- Know the difference between a MCU.MPU and CPU.
- Differences between a 8 bit and 32 bit MCU.
- Differences between RISC and CISC architecture
- Differences between Harvard and Von Neuman Architecture
- Temporary production technologies

Definition of a Microcontroller

Definition of a Microcontroller 5

- What is the Definition of a Microcontroller?
- There is no absolut definition...

A microcontroller (sometimes abbreviated µC, uC or MCU) is a small computer on a single integrated circuit containing a processor core, memory, and programmable input/output peripherals. Program memory in the form of NOR flash or OTP ROM is also often included on chip, as well as a typically small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications.

....from Wikipedia

Architecture

CISC and RISC

CISC vs RISC -7

CISC

- **Emphasis on HW**
- Includes Multi-clock complex instructions
- Memory-to-memory: "LOAD" and "STORE" incorporated in instructions
- Small code sizes, high cycles per second
- Transistors used for storing complex instructions

RISC

- **Emphasis on SW**
- Single-clock, reduced instructions only
- Register-to-register: "LOAD" and "STORE" and independent from instructions
- Low cycles per second, larger code size
- Spends more transistors on memory registers

Example: Multiply (MULT), considered as a complex instruction

CISC: MULT 2:3, 5:2 RISC: LOAD A, 2:3

LOAD B, 5:2 PROD A, B STORE 2:3, A

Block diagram and the Core

Essential block diagram of a MCU

Cortex-M3 Microprocessor

Cortex-M3 Microprocessor

- Hierarchical processor integrating core and advanced system peripherals
- Cortex-M3 core
 - Harvard architecture
 - 3-stage pipeline w. branch speculation
 - Thumb®-2 and traditional Thumb
 - ALU w. H/W divide and single cycle multiply
- Cortex-M3 Processor
 - Cortex-M3 core
 - Configurable interrupt controller
 - Bus matrix
 - Advanced debug components
 - Optional MPU & ETM (Not available in STM32F10x)

Processors for All Applications 12

Bus system

Architecture of the bus

Cortex M3 Architecture: Harvard benefits with Von Neumann single memory space

Cortex-M3 Memory Map

Vendor Specific (0.5GB)

- Set aside to enable vendors to implement peripheral compatibility with previous systems
- · Private Peripheral Bus (1M)
 - Address space for system components (CoreSight, NVIC etc.)
- External Device (1GB).
 - Intended for external devices and/or shared memory that needs ordering/non-buffered
- External RAM (1GB)
 - Intended for off chip memory
- Peripheral (0.5G)
 - Intended for normal peripherals. The bottom 1MB of the 32MB peripheral address space (0x40000000 – 0x400FFFFF) is reserved for bit-band accesses. Accesses to the peripheral 32MB bit band alias region (0x42000000 – 0x43FFFFFF) are remapped to this 1MB
- SRAM (0.5GB)
 - Intended for on-chip SRAM. The bottom 1MB of the SRAM address space (0x20000000 - 0x200FFFFF) is reserved for bit-band accesses. Accesses to the SRAM 32MB bit band alias region (0x22000000 - 0x23FFFFFF) are remapped to this 1MB address space.
- Code(0.5GB)
 - Reserved for code memory (flash, SRAM). This region is accessed via the Cortex-M3 ICode and DCode busses.

Production Technologies

• The road to success...

CMOSF9 eEEPROM Technology History

Technology to Break Price Barriers -18

- Technology driving 8-bit evolution
- Breakthrough with 130nm lithography
- E² non-volatile memory, analog and digital peripherals

 $0,4\mu M$ $0,13\mu m$

How do we think when we design a MCU?

MCU market forecast 24

MCU Sales by Category (2009-2017)

Source: IC Insights

ST has licensed all Cortex-M processors

- Forget traditional 8/16/32-bit classifications and get
 - Seamless architecture across all applications
 - Every product optimized for ultra-low power and ease of use

Cortex-M0

8/16-bit applications

Cortex-M3

16/32-bit applications

Cortex-M4

32-bit/DSC applications

Binary and tool compatible

Cortex-M Powerful & scalable instruction set

Floating Point Unit •

DSP (SIMD, fast MAC)

Advanced data processing

Bit field manipulations

Minimal External Components

- Built-in Supervisor reduces need for external components
 - Filtered reset input, Power-On reset, Low-Voltage Detect, Brown-Out Detect, Watchdog Timer with independent clock
- One main crystal drives entire system (with help from PLL)
 - Inexpensive 4-16 MHz crystal drives CPU, USB, all peripherals
- Embedded 8 MHz RC can be used as main clock
 - Optional 32 kHz crystal needed additionally for RTC, can run on internal 40 kHz RC
- Only 7 external passive components for base system on LQFP100 package!!

STM32 – 6 product series

Common core peripherals and architecture:

> Communication peripherals: USART, SPI, I²C

Multiple generalpurpose timers

Integrated reset and brown-out warning

Multiple DMA

2x watchdogs Real-time clock

Integrated regulator PLL and clock circuit

Up to 3x 12-bit DAC

Up to 4x 12-bit ADC (Up to 5 MSPS)

Main oscillator and 32 kHz oscillator

Low-speed and high-speed internal RC oscillators

-40 to +85 °C and up to 105 °C operating temperature range

Low voltage 2.0 to 3.6 V or 1.65/1.7 to 3.6 V (depending on series)

Temperature sensor

STM32 F4 series - High performance with DSP (STM32F401/405/415/407/417/427/437/429/439)

Up to 180 MHz Cortex-M4 DSP/FPU	Up to 2-Mbyte Flash	Up to 256-Kbyte SRAM	2x USB 2.0 OTG FS/HS	3-phase MC timer	2x CAN 2.0B	SDIO 2x I ² S audio Camera IF	Ethernet IEEE 1588	LCD-TFT SDRAM I/F	STM32 F4
--	---------------------------	----------------------------	----------------------------	---------------------	----------------	---	-----------------------	-------------------------	----------

STM32 F3 series - Mixed-signal with DSP (STM32F302/303/313/373/383)

						/			
72 MHz	IIn to	Up to 48-Kbyte SRAM &		2x		II- A-			
Cortex-M4	256_Khyto	48-Kbyte	USB	3-phase	CAN	Up to	3x 16-bit	4x PGA	
with DSP	Elach	SRAM &	2.0 FS	MC timer	2.0B	comparator	ΣΔ ADC	4X FUA	STM32 F3
and FPU	Flasii	CCM-SRAM		(144 MHz)		comparator			

STM32 F2 series - High performance (STM32F205/215/207/217)

120 MHz Up Cortex-M3 1-MI CPU Fla	te 128-Kbyte	2x USB 2.0 OTG FS/HS	3-phase MC timer	2x CAN 2.0B	SDIO 2x I ² S audio Camera IF	Ethernet IEEE 1588	Crypto	STM32 F2
---	--------------	----------------------------	---------------------	----------------	---	-----------------------	--------	----------

STM32 F1 series - Mainstream - 5 product lines (STM32F100/101/102/103 and 105/107)

Up to 72 MHz Cortex-M3 CPU	Up to 1-Mbyte Flash	Up to 96-Kbyte SRAM	USB 2.0 OTG FS	3-phase MC timer	Up to 2x CAN 2.0B	SDIO 2x I ² S audio	Ethernet IEEE 1588	STM32 F1
-------------------------------------	---------------------------	---------------------------	-------------------	---------------------	-------------------------	--------------------------------------	-----------------------	----------

STM32 F0 series - Entry level (STM32F030/50/051)

48 MHz Cortex-M0 CPU	64-Kbyte	Up to 8-Kbyte SRAM	3-phase MC timer	Comparator	CEC	STM32 F0
----------------------------	----------	--------------------------	---------------------	------------	-----	----------

STM32 L1 series - Ultra-low-power (STM32L100/151/152/162)

32 MHz Cortex-M3 CPU		Up to 48-Kbyte SRAM	USB FS device	Up to 12-Kbyte EEPROM	LCD 8x40 4x44	Op-amps Comparator	BOR MSI VScal	AES 128-bit	STM32L1
----------------------------	--	---------------------------	------------------	-----------------------------	---------------------	-----------------------	---------------------	----------------	---------

STM32 – Large compatible portfolio

More than 450 compatible devices

STM32F439

System Power Supply 1.2V regulator POR/PDR/PVD XTAL oscillators Internal RC oscillators 32KHz + 16MHz Clock Control 1x SysTick Timer (independent & window) 82/114/140/168 I/Os Cyclic redundancy check (CRC) Control

2x16-bit Motor Control PWM

10x 16-bit timers 2x 32-bit timers

ART Accelerator™
ARM Cortex M4 CPU 180 MHz
Nested vector interrupt controller (NVIC)
JTAG/SW Debug/ETM
MPU
Floating point unit (FPU)
Multi layer AHB bus matrix
16 Channel DMA
Crypto/hash processor
3DES, AES 256, GCM, CCM
SHA-1, SHA-256, MD5, HMAC

APT AccoloratorIM

Processing performance

- ART Accelerator[™] for F4 series
 - The ART (Adaptive Real-Time) memory accelerator unleashes processing performance equivalent to 0-wait state Flash execution up to 180 MHz for F4 series

System performance '

32-bit multi-AHB bus matrix

STM32 F4

STM32F4

Providing more performance

Linear **execution performance** from Flash

- Up to 180 MHz/ 225 DMIPS with ART Accelerator™
- Up to 608 CoreMark Result
- ARM Cortex-M4 with floating-point unit (FPU)

Press release:

http://www.st.com/web/en/press/en/p3393

Free software solutions from ST 34

Standard Peripheral Library

USB device library **USB Host Library**

Motor Control Library

Self-test routines for **EN/IEC 60335-1 Class B**

DSP Library

SPEEX Codec

Encryption Library

STM32 Audio Engine

Software libraries – speed time to market

ST software libraries free at www.st.com/mcu

C source code for easy implementation of all STM32 peripherals in any application

- Standard library source code for implementation of all standard peripherals; code implemented in demos for STM32 evaluation board
- Motor control library sensorless vector control for 3-phase brushless motors
- USB Device Library Supporting HID,CDC, Audio, Mass Storage, DFU...)
- USB Host Library Supporting Mass Storage and HID
- **DSP Library** PID, IIR, FFT, FIR
- Graphics Library Drop down menus, radio buttons, sliders, ...

Software Solutions for

- Ethernet TCP/IP
- Bluetooth
- SpeexCodec
- And many others.

STM32F10x_StdPeriph_Lib

Ecosystem

- Evaluation board for full product feature evaluation
 - Hardware evaluation platform for all interfaces
 - Connection to all I/Os and all peripherals
- Discovery kit for cost-effective evaluation and prototyping

Available in Q4-2012

(For any support before please contact our local ST office)

STM32F3DISCOVERY

Available End Q3-2012

(For any support before please contact our local ST office)

STM32F3-Discovery kit

- Includes everything for a quick start with the STM32F3 for less than \$11
- Ideal for evaluation, learning, prototyping
- The kit combines ST's STM32 F3 MCU with 9-axis MEMS sensors (gyroscope and e-compass), ready for 3D motion-sensing application development
- Dedicated web page: <u>www.st.com/stm32f3discovery</u> with SW example and documents

8 LEDs

LSM303DLHC MEMS e-compass and accelerator

L3GD20 MEMS gyroscope

2012 Embedded Market Study

Future

MCU Trends – a selection of topics –

- Price → Technology
- Performance → Low Power and MIPS
- Memory size → Larger flash and RAM
- Peripheral Integration → analog, RF
- Industry standard cores → Cortex Mx
- Advanced Peripherals → USB Ethernet LCD SDRAM
- Predefined Libraries + RTOS → Abstraction from the hardware

After the session you should have learnt.. 42

- Know the difference between a MCU and a MPU and a CPU.
- Differences between a 8 bit and 32 bit MCU.
- Differences between Risc and Cisc architecture
- Differences between Harvard and Von Neuman Architecture
- Temporary production technologies

Thank you 43

www.st.com/stm32