EP2200 Queuing theory and teletraffic systems

2nd lecture

Poisson process Markov process

Viktoria Fodor KTH Laboratory for Communication networks, School of Electrical Engineering

Course outline

- Stochastic processes behind queuing theory (L2-L3)
 - Poisson process
 - Markov Chains
 - Continuous time
 - Discrete time
 - Continuous time Markov Chains and queuing Systems
- Markovian queuing systems (L4-L7)
- Non-Markovian queuing systems (L8-L10)
- Queuing networks (L11)

Outline for today

- Recall: queuing systems, stochastic process
- Poisson process to describe arrivals and services
 –properties of Poisson process
- Markov processes to describe queuing systems
 –continuous-time Markov-chains
- Graph and matrix representation

Recall from previous lecture

- Queuing theory: performance evaluation of resource sharing systems
- Specifically, for teletraffic systems
- Definition of queuing systems
- Performance triangle: service demand, server capacity and performance
- Service demand is random in time \rightarrow theory of stochastic processes

Stochastic process

- Stochastic process
 - A system that evolves changes its *state* in *time* in a random way
 - Random variables indexed by a time parameter
 - continuous or discrete space
 - continuous or discrete time
 - State probability distribution
 - time dependent state probability distribution ensemble average (probability density function, probability distribution function (or cumulative distribution function)

$$f_x(t) = P(X(t) = x), \ F_x(t) = P(X(t) \le x)$$

• limiting state probability distribution

$$f_x = \lim_{t \to \infty} P(X(t) = x), \quad F_x = \lim_{t \to \infty} P\{X(t) \le x\}$$

• stationary $\overrightarrow{process}$

$$F_x(t+\tau) = F_x(t), \quad \forall t$$

• ergodic process: ensemble average = time average

time average

ensemble average

Outline for today

- Recall: queuing systems, stochastic process
- Poisson process to describe arrivals and services
 –properties of Poisson process
- Markov processes to describe queuing systems
 –continuous-time Markov-chains
- Graph and matrix representation
- Transient and stationary state of the process

Poisson process

- Recall: key random variables and distributions
- Poisson distribution
 - Discrete probability distribution
 - Probability if a given number of events

$$P(X=k) = p_k = \frac{\lambda^k}{k!} e^{-\lambda}$$

- Exponential distribution
 - Continuous probability distribution

$$f(x) = p(x) = \lambda e^{-\lambda x}, \quad F(x) = P(X \le x) = 1 - e^{-\lambda x}$$

Poisson process

- Poisson process: to model arrivals and services in a queuing system
- Definition:
 - -Stochastic process discrete state, continuous time
 - -X(t) : number of events (arrivals) in interval (0-t] (counting process)
 - –X(t) is Poisson distributed with parameter λt

$$P(X(t) = k) = p_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, \quad E[X(t)] = \lambda t$$

 $-\lambda$ is called as the intensity of the Poisson process -note, limiting state probabilities $p_k = \lim_{t\to\infty} p_k(t)$ do not exist

Poisson process

• Def: The number of arrivals in period (0,t] has Poisson distribution with parameter λt , that is:

$$P(X(t) = k) = p_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

- Theorem: For a Poisson process, the time between arrivals (interarrival time) is exponentially distributed with parameter λ:
 - Recall exponential distribution:

$$f(t) = \lambda e^{-\lambda t}, \quad F(t) = P(\tau \le t) = 1 - e^{-\lambda t}, \quad E[\tau] = 1/\lambda$$

– Proof:

 $P(\tau < t) = P(\text{at least one arrival until } t) = 1 - P(\text{no arrival until } t) = 1 - e^{-\lambda t}$

The memoryless property

• Def: a distribution is memoryless if:

 $P(\tau > t + s \mid \tau > s) = P(\tau > t)$

- Example: the length of the phone calls
 - Assume the probability distribution of holding times (τ) is memoryless
 - Your phone calls last 30 minutes in average
 - You have been on the phone for 10 minutes already
 - What should we expect? For how long will you keep talking?

 $P(\tau > t + 10 | \tau > 10) = P(\tau > t)$

 It does not matter when you have started the call, if you have not finished yet, you will keep talking for another 30 minutes in average.

Exponential distribution and memoryless property

• Def: a distribution is memoryless if:

 $P(\tau > t + s \mid \tau > s) = P(\tau > t)$

• Exponential distribution:

$$f(t) = \lambda e^{-\lambda t}, \quad F(t) = P(\tau \le t) = 1 - e^{-\lambda t}, \quad \overline{F}(t) = P(\tau > t) = e^{-\lambda t}$$

• The Exponential distribution is memoryless:

$$P(\tau > t + s \mid \tau > s) = \frac{P(\tau > t + s, \tau > s)}{P(\tau > s)} = \frac{P(\tau > t + s)}{P(\tau > s)} = \frac{P(\tau > t + s)}{P(\tau > s)} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t} = P(\tau > t)$$

Poisson process and exponential distribution

- Poisson arrival process implies exponential interarrival times
- Exponential distribution is memoryless

 For Poisson arrival process: the time until the next arrival does not depend on the time spent after the previous arrival

Group work

Waiting for the bus:

- Bus arrivals can be modeled as stochastic process
- The mean time between bus arrivals is 10 minutes. Each day you arrive to the bus stop at a random point of time. How long do you have to wait in average?

Consider the same problem, given that

- a) Buses arrive with fixed time intervals of 10 minutes.
- b) Buses arrive according to a Poisson process.
- See "The hitchhiker's paradox" in Virtamo, Poisson process.

Properties of the Poisson process (See also problem set 2)

- 1. The sum of Poisson processes is a Poisson process
 - The intensity is equal to the sum of the intensities of the summed (multiplexed, aggregated) processes
- 2. A random split of a Poisson process result in Poisson subprocesses
 - The intensity of subprocess *i* is λp_i , where p_i is the probability that an event becomes part of subprocess *i*
- 3. Poisson arrivals see time average (PASTA)
 - Sampling a stochastic process according to Poisson arrivals gives the state probability distribution of the process (even if the arrival changes the state)
 - Also known as ROP (Random Observer Property)
- 4. Superposition of arbitrary renewal processes tends to a Poisson process (Palm theorem) we do not prove
 - Renewal process: independent, identically distributed (iid) inter-arrival times

Outline for today

- Recall: queuing systems, stochastic process
- Poisson process to describe arrivals and services
 –properties of Poisson process
- Markov processes to describe queuing systems
 - Continuous-time Markov-chains
 - Graph and matrix representation
 - Transient and stationary state of the process

Markov processes

- Stochastic process
 - $p_i(t) = P(X(t) = i)$
- The process is a Markov process if the future of the process depends on the current state only - Markov property
 - $P(X(t_{n+1})=j \mid X(t_n)=i, X(t_{n-1})=i, ..., X(t_0)=m) = P(X(t_{n+1})=j \mid X(t_n)=i)$
 - Homogeneous Markov process: the probability of state change is unchanged by time shift, depends only on the time interval $P(X(t_{n+1})=j \mid X(t_n)=i) = p_{ij}(t_{n+1}-t_n)$
- Markov chain: if the state space is discrete
 - A homogeneous Markov chain can be represented by a graph:
 - States: nodes
 - State changes: edges

Discrete-time Markov-chains (detour)

- Discrete-time Markov-chain: the time is discrete as well
 - X(0), X(1), ... X(n), ...
 - Single step state transition probability for homogeneous MC: $P(X(n+1)=j | X(n)=i) = p_{ij}, \forall n$
- Example
 - Packet size from packet to packet
 - Number of correctly received bits in a packet
 - Queue length at packet departure instants ...
 (get back to it at non-Markovian queues)

Discrete-Time Markov-chains

- Transition probability matrix:
 - The transitions probabilities can be represented in a matrix
 - Row *i* contains the probabilities to go from *i* to state j=0, 1, ...M
 - *P_{ii} is the probability of staying in the same state*

Discrete-Time Markov-chains

- The probability of finding the process in state *j* at time *n* is denoted by:
 - $p_j^{(n)} = P(X(n) = j)$
 - for all states and time points, we have: $p^{(n)} = \begin{bmatrix} p_0^{(n)} & p_1^{(n)} & \cdots & p_M^{(n)} \end{bmatrix}$
- The time-dependent (transient) solution is given by:

$$p_i^{(n+1)} = p_i p_{ii} + \sum_{j \neq i} p_j^{(n)} p_{ji}$$
$$p^{(n+1)} = p^{(n)} \mathbf{P} = p^{(n-1)} \mathbf{P} \mathbf{P} = \dots = p^{(0)} \mathbf{P}^{n+1}$$

Discrete-Time Markov-chains

- Steady (or stationary) state exists if
 - The limiting probability vector exists
 - And is independent from the initial probability vector

$$\lim_{n\to\infty} p^{(n)} = p = \begin{bmatrix} p_0 & p_1 & \cdots & p_M \end{bmatrix}$$

• Stationary state probability distribution is give by:

$$\boldsymbol{p} = \boldsymbol{p} \, \mathbf{P}, \quad \sum_{j=0}^{M} \boldsymbol{p}_{j} = 1 \qquad \left(\boldsymbol{p}^{(n+1)} = \boldsymbol{p}^{(n)} \mathbf{P} \right)$$

- Note also:
 - The probability to remain in a state *j* for *m* time units has geometric distribution.

$$p_{jj}^{m-1}(1-p_{jj})$$

The geometric distribution is a memoryless discrete probability distribution (the only one)

Continuous-time Markov chains (homogeneous case)

Continuous time, discrete space stochastic process, with Markov property, that is:

$$P(X(t_{n+1}) = j | X(t_n) = i, X(t_{n-1}) = l, \dots X(t_0) = m) =$$

$$P(X(t_{n+1}) = j | X(t_n) = i), \quad t_0 < t_1 < \dots < t_n < t_{n+1}$$

State transition can happen in any point of time Example:

- number of packets waiting at the output buffer of a router
- number of customers waiting in a bank
- The time spent in a state has to be exponential to ensure Markov property:
 - the probability of moving from state *i* to state *j* sometime between t_n and t_{n+1} does not depend on the time the process already spent in state *i* before t_n .

Continuous-time Markov chains (homogeneous case)

- State change probability: $P(X(t_{n+1})=j | X(t_n)=i) = p_{ij}(t_{n+1}-t_n)$
- Characterize the Markov chain with the state transition rates instead:

 $\begin{aligned} q_{ij} &= \lim_{\Delta t \to 0} \frac{P(X(t + \Delta t) = j/X(t) = i)}{\Delta t}, \quad i \neq j \\ q_{ii} &= -\sum_{j \neq i} q_{ij} \end{aligned} - \text{defined to easy calculation later on} \end{aligned}$

• Transition rate matrix **Q**:

Summary

- Poisson process:
 - number of events in a time interval has Poisson distribution
 - time intervals between events has exponential distribution
 - The exponential distribution is memoryless
- Markov process:
 - stochastic process
 - future depends on the present state only, the Markov property
- Continuous-time Markov-chains (CTMC)
 - state transition intensity matrix
- Next lecture
 - CTMC transient and stationary solution
 - global and local balance equations
 - birth-death process and revisit Poisson process
 - Markov chains and queuing systems
 - discrete time Markov chains