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Course outline 

• Stochastic processes behind queuing theory (L2-L3) 

– Poisson process 

– Markov Chains 

• Continuous time 

• Discrete time 

– Continuous time Markov Chains and queuing Systems 

• Markovian queuing systems (L4-L7) 

• Non-Markovian queuing systems (L8-L10) 

• Queuing networks (L11) 
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Outline for today 

• Recall: queuing systems, stochastic process 

• Poisson process – to describe arrivals and services  

–properties of Poisson process 

• Markov processes – to describe queuing systems 

–continuous-time Markov-chains 

• Graph and matrix representation 
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Recall from previous lecture 

• Queuing theory: performance evaluation of resource sharing 
systems 

• Specifically, for teletraffic systems 

 

• Definition of queuing systems  

• Performance triangle: service demand, server capacity and 
performance 

 

• Service demand is random in time  theory of stochastic 
processes 

Service 

Arrival 

Blocking 
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Stochastic process 
• Stochastic process 

– A system that evolves – changes its state - in time in a random way 

– Random variables indexed by a time parameter  

• continuous or discrete space  

• continuous or discrete time  

– State probability distribution 

• time dependent state probability distribution – ensemble average (probability 
density function, probability distribution function (or cumulative distribution function) 

 

• limiting state probability distribution  

  

• stationary process 

 

• ergodic process: ensemble average = time average 

ensemble average time average 
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Outline for today 

• Recall: queuing systems, stochastic process 

• Poisson process – to describe arrivals and services  

–properties of Poisson process 

• Markov processes – to describe queuing systems 

–continuous-time Markov-chains 

• Graph and matrix representation 

• Transient and stationary state of the process 
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Poisson process 

• Recall: key random variables and 
distributions 

• Poisson distribution 

– Discrete probability distribution 

– Probability if a given number of events 

 

 

 

• Exponential distribution 

– Continuous probability distribution  
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Poisson process 

• Poisson process: to model arrivals and services in a queuing system 

• Definition: 

–Stochastic process – discrete state, continuous time 

–X(t) : number of events (arrivals) in interval (0-t] (counting process) 

–X(t) is Poisson distributed with parameter t 

 

 

 

– is called as the intensity of the Poisson process 

–note, limiting state probabilities pk=limt∞ pk(t) do not exist 

 

 pk(t): Poisson distribution 
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• Def: The number of arrivals in period (0,t] has Poisson distribution with 
parameter t, that is: 

 

 

• Theorem: For a Poisson process, the time between arrivals (interarrival time) is 
exponentially distributed with parameter : 

– Recall exponential distribution: 

 

 

– Proof: 
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Poisson distribution 

interarrival time  

exponential 

pk(t): Poisson distribution 

0 t k events  
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• Def: a distribution is memoryless if: 

 

 

 

• Example: the length of the phone calls 

– Assume the probability distribution of holding times () is memoryless 

– Your phone calls last 30 minutes in average 

– You have been on the phone for 10 minutes already 

– What should we expect? For how long will you keep talking? 

 

 

– It does not matter when you have started the call, if you have not 
finished yet, you will keep talking for another 30 minutes in average. 

 The memoryless property 
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• Def: a distribution is memoryless if: 

 

 

• Exponential distribution: 

 

 

 

• The Exponential distribution is memoryless: 

 

   

 

Exponential distribution and  
memoryless property 
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• Poisson arrival process implies exponential interarrival times 

• Exponential distribution is memoryless 

 

 

 

 

• For Poisson arrival process:  
the time until the next arrival does not depend on the time 
spent after the previous arrival  

Poisson process and exponential 
distribution 

number of arrivals 

Poisson distribution 

interarrival time  

exponential 

We start to follow the system from this point of time  

EP2200 Queuing theory and teletraffic 
systems 

Poisson arrival () 

Exp() t 
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Group work 

Waiting for the bus:  

• Bus arrivals can be modeled as stochastic 

process 

• The mean time between bus arrivals is 10 

minutes. Each day you arrive to the bus stop 

at a random point of time. How long do you 

have to wait in average? 

 

Consider the same problem, given that 

a) Buses arrive with fixed time intervals of 10 minutes. 

b) Buses arrive according to a Poisson process.  

See “The hitchhiker’s paradox” in Virtamo, Poisson process.  
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1. The sum of Poisson processes is a Poisson process 

– The intensity is equal to the sum of the intensities of the summed 
(multiplexed, aggregated) processes 

2. A random split of a Poisson process result in Poisson subprocesses 

– The intensity of subprocess i is pi, where pi is the probability that 
an event becomes part of subprocess i  

3. Poisson arrivals see time average (PASTA)  

– Sampling a stochastic process according to Poisson arrivals gives 
the state probability distribution of the process (even if the arrival 
changes the state) 

– Also known as ROP (Random Observer Property) 

4. Superposition of arbitrary renewal processes tends  to a Poisson 
process (Palm theorem) – we do not prove 

– Renewal process: independent, identically distributed (iid)  
inter-arrival times 

Properties of the Poisson process 
(See also problem set 2) 
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Outline for today 

• Recall: queuing systems, stochastic process 

• Poisson process – to describe arrivals and services  

–properties of Poisson process 

• Markov processes – to describe queuing systems 

–   Continuous-time Markov-chains 

– Graph and matrix representation 

– Transient and stationary state of the process 
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Markov processes 

• Stochastic process  

– pi(t)=P(X(t)=i) 

• The process is a Markov process if the future of the process depends on the 

current state only - Markov property 

– P(X(tn+1)=j | X(tn)=i, X(tn-1)=l, …, X(t0)=m) = P(X(tn+1)=j | X(tn)=i) 

– Homogeneous Markov process: the probability of state change is unchanged 

by time shift, depends only on the time interval   

P(X(tn+1)=j | X(tn)=i) = pij(tn+1-tn) 

• Markov chain: if the state space is discrete  

– A homogeneous Markov chain can be represented by a graph: 

• States: nodes 

• State changes: edges 
1 0 M 
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Discrete-time Markov-chains 
(detour) 

• Discrete-time Markov-chain: the time is discrete as well 

– X(0), X(1), … X(n), … 

– Single step state transition probability for homogeneous MC: 
P(X(n+1)=j | X(n)=i) = pij, n 

• Example 

– Packet size from packet to packet 

– Number of correctly received bits in a packet 

– Queue length at packet departure instants …  
(get back to it at non-Markovian queues) 
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• Transition probability matrix: 

– The transitions probabilities can be represented in a matrix 

– Row i contains the probabilities to go from i to state j=0, 1, …M 

• Pii is the probability of staying in the same state 
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• The probability of finding the process in state j at time n is denoted by: 

– pj
(n) = P(X(n) = j) 

– for all states and time points, we have: 

 

 

• The time-dependent (transient) solution is given by: 
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• Steady (or stationary) state exists if  

– The limiting probability vector exists 

– And is independent from the initial probability vector 

 

 

• Stationary state probability distribution is give by: 

 

 

 

• Note also: 

– The probability to remain in a state j for m time units has geometric 
distribution 

 

– The geometric distribution is a memoryless discrete probability 
distribution (the only one) 
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Continuous-time Markov chains 
(homogeneous case)  

• Continuous time, discrete space stochastic process, with Markov 
property, that is: 

 

 

 

 

• State transition can happen in any point of time 

• Example:  

– number of packets waiting at the output buffer of a router 

– number of customers waiting in a bank 

 

• The time spent in a state has to be exponential to ensure Markov 
property: 

– the probability of moving from state i to state j sometime between 
tn  and tn+1 does not depend on the time the process already spent 
in state i before tn. 
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Continuous-time Markov chains 
(homogeneous case)  

• State change probability: P(X(tn+1)=j | X(tn)=i) = pij(tn+1-tn) 

 

• Characterize the Markov chain with the state  transition rates instead: 
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- defined to easy calculation later on   
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Summary 

• Poisson process: 

– number of events in a time interval has Poisson distribution 

– time intervals between events has exponential distribution 

– The exponential distribution is memoryless 

• Markov process: 

– stochastic process 

– future depends on the present state only, the Markov property 

• Continuous-time Markov-chains (CTMC) 

– state transition intensity matrix 

• Next lecture 

– CTMC transient and stationary solution 

– global and local balance equations 

– birth-death process and revisit Poisson process  

– Markov chains and queuing systems 

– discrete time Markov chains 

 

 


