morner
$\underset{\substack{\text { Roral } \\ \text { orsterniture }}}{ }$

## DD2476 Search Engines and Information Retrieval Systems Lecture 1: Introduction

Hedvig Kjellström
hedvig@kth.se
https://www.kth.se/social/course/DD2476

- Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers).

Unstructured (text) vs structured (database) data in the mid-nineties

Unstructured (text) vs structured (database) data today


How good are the retrieved docs?

- Precision: Fraction of retrieved docs that are relevant to the user's information need
- Recall: Fraction of relevant docs in collection that are retrieved


## More in

Lecture 3

## Today

- Presentation of lecturers
- Course practicalities
- Curriculum
- Examination
- Course homepage:
https://www.kth.se/social/course/DD2476
- Boolean retrieval (Manning Chapter 1)
- Building an inverted index
- Boolean queries
- Term vocabulary (Manning Chapter 2)
- Elements of text

DD2476 Lecture 1, February 4, 2014

## Hedvig Kjellström

- Associate Professor at CSC
- Researcher in Robotics at CVAP, CSC
- Lecture 1, 4, 5, 7, 12




## Jussi Karlgren

- Founder of Gavagai AB, Adjunct Professor at CSC

Researcher in Language
Technology at TCS, CSC

- Lecture 3, 6



## Viggo Kann

Professor at CSC

- Researcher in Theoretical Computer Science at TCS, CSC
- Lecture 8


DD2476 Lecture 1, February 4, 2014

DD2476 Lecture 1, February 4, 2014

- Researcher in Language Technology at TCS, CSC
- Lecture 1-3, 5



## Curriculum

C. D. Manning, P. Raghavan and H. Schütze, Introduction to Information Retrieval, Cambridge University Press, 2008

Preliminary version available online in pdf format

- See course homepage: https://www.kth.se/social/ course/DD2476



## Curriculum

- The whole book will be covered
- Depth according to learning outcomes
- See course homepage:
https://www.kth.se/social/course/DD2476
- Reading on your own necessary
- Lectures cover only highlights, very high pace
- Examination on whole curriculum
- Course given for the fourth time
- More focus on evaluation in the assignments, one more lecture on evaluation
- Less focus on implementational details


## Course Homepage

- News!
- Schedule with readings and examination deadlines
- Contact information
- Computer assignment and project descriptions
- https://www.kth.se/social/course/DD2476


## Examination

Three computer assignments (6 ECTS, A-F)

- Individually
- Lab 1 (Lecture 1-3 readings) February 18
- Lab 2 (Lecture 4-6 readings) March 18
- Lab 3 (Lecture 7-8 readings) April 1
- Please register in Rapp: rapp.csc.kth.se/rapp Important
- Project (3 ECTS, A-F)
- Groups of four-five students
- Presentation (Whole curriculum) May 16


## Boolean Retrieval

(Manning Chapter 1)

## A First Information Retrieval Example

- Ad hoc retrieval: Find documents in a collection of documents (corpus), relevant to a certain user need
- Boolean retrieval model: Model in which queries are posed as Boolean expressions
- Example: Shakespeare
- Find all Shakespeare plays that contain the words

BRUTUS AND CAESAR AND NOT CALPURNIA


DD2476 Lecture 1, February 4, 2014

Term-Document Incidence Matrix
Document = play

| $\begin{aligned} & 0 \\ & \hline 0 \\ & 3 \end{aligned}$ |  | Antony and Cleopatra | Julius <br> Caesar | The Tempest | Hamlet | Othello | Macbeth |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ANTONY | 1 | 1 | 0 | 0 | 0 | 1 |
|  | brutus | 1 | 1 | 0 | 1 | 0 | 0 |
|  | CAESAR | 1 | 1 | 0 | 1 | 1 | 1 |
| 11 | CALPURNIA | 0 | 1 | 0 | 0 | 0 | 0 |
| E | CLEOPATRA | 1 | 0 |  | 0 | 0 | 0 |
| - | MERCY | 1 | 0 |  | 1 | 1 | 1 |
|  | WORSER | 1 | 0 |  |  | 1 | 0 |
|  |  |  |  |  | 1 if play contains word, 0 otherwise |  |  |

## BRUTE Force Approach

- One could grep all of Shakespeare's plays for BRUTUS and CAESAR, then strip out plays containing CALPURNIA
- Unix command grep, linear search

Why is that not the answer?

- Slow (for large corpora)
- Other operations (e.g., find the word ROMANS NEAR COUNTRYMEN) not feasible
- Ranked retrieval (best documents to return)
- Instead, organize beforehand

DD2476 Lecture 1, February 4, 2014

Bitwise Operations
Document = play

| $\begin{aligned} & \text { 믕 } \\ & 3 \end{aligned}$ |  | $\begin{gathered} \text { Antony } \\ \text { and } \\ \text { Cleopatra } \end{gathered}$ | Julius Caesar | $\begin{aligned} & \text { The } \\ & \text { Tempest } \end{aligned}$ | Hamlet | Othello | Macbeth |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Antony | 1 | 1 | 0 | 0 | 0 | 1 |
|  | brutus | 1 | 1 | 0 | 1 | 0 | 0 |
|  | caesar | 1 | 1 | 0 | 1 | 1 | 1 |
| 11 | calpurnia | 0 | 1 | 0 | 0 | 0 | 0 |
| $E$ | Cleopatra | 1 | 0 | 0 | 0 | 0 | 0 |
| $\stackrel{\square}{\bullet}$ | MERCY | 1 | 0 | 1 | 1 | 1 | 1 |
|  | WORSER | 1 | 0 | 1 | 1 | 1 | 0 |

BRUTUS AND CAESAR AND NOT CALPURNIA
110100 AND 110111 AND NOT 010000 110100 AND 110111 AND 101111
$=100100$ (Antony and Cleopatra, Hamlet)

## Answers to Query

- Antony and Cleopatra, Act III, Scene ii

Agrippa [Aside to Domitius Enobarbus]:
Why, Enobarbus,
When Antony found Julius CAESAR dead, He cried almost to roaring; and he wept When at Philippi he found BRUTUS slain.

- Hamlet, Act III, Scene ii

Lord Polonius:
I did enact Julius CAESAR: I was killed i' the Capitol; BRUTUS killed me.

## Exercise 5 Minutes

- Consider $10^{6}$ documents, each with $\sim 10^{3}$ words.
- Avg 6 bytes/word including spaces/punctuation - 6GB of data.
- Say there are $0.5^{*} 10^{6}$ distinct terms among these.
- Normal size collection!
- Discuss in pairs:
- What are the problems with using the term-document incidence matrix on a collection this size?
- How can the method be adapted to solve these problems?


## Inverted Index

- For each term $t$, store a list of all documents that contain $t$.
- Identify each by a docID, a document serial number

- Can we use fixed-size arrays for this?
- What happens if the term CAESAR is added to document 14 ?


## Inverted Index

- Need variable-size posting lists
- Implementational details
- trade-off storage size/ease of insertion
- Sort lists wrt DocID

| BRUTUS <br> CAESAR <br> CALPURNIA |
| :--- |

## More in Manning <br> Chapter 4-5

Building an Inverted Index


DD2476 Lecture 1, February 4, 2014

## Beyond Term Search

- Allow compounds, e.g., phrases "..."

More in
Lecture 2 - - Additional operators, e.g., NEAR

- CAESAR NEAR CALPURNIA
- Index has to capture term proximity
- Zones in documents
- (author = SHAKESPEARE) AND (text contains WORSER)

More in Manning
Chapter 10

## Query Processing with Inverted Index

- Boolean queries are processed as with the incidence matrix BRUTUS AND CALPURNIA

| BRUTUS | $\square \square \square$ | 1 | 2 | 4 | 11 | 31 | 45173 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CALPURNIA | ${ }_{0}$ | 2 | 31 | 54 | 101 |  |  |  |
| Intersection | $0 \square$ | 2 | 31 |  |  |  |  |  |

- NOT can also be handled with search
- Organizing this work (sorting, evaluation order): query optimization

```
More in Manning
Chapter }
```


## Beyond Term Search

- Not only presence/absence, but also term frequency
- 0 vs 1 hit
- 1 vs 2 hits
- 2 vs 3 hits
- Usually, more is better


## Exercise 5 Minutes

- Try the search feature at www.rhymezone.com/shakespeare
- Who has an open browser? Find someone nearby, or come up to me.
- Discuss in groups:
- What could it do better?
- Write down

Ropat Mssitury

## IR vs Databases: Structured vs Unstructured Data

| Employee | Manager | Salary |
| :--- | :--- | :--- |
| Smith | Jones | 50000 |
| Chang | Smith | 60000 |
| Ivy | Smith | 50000 |

- Typically allows numerical range and exact match (for text) queries, e.g.,

Salary $\geq 60000$ AND Manager $=$ Smith.

## Unstructured Data

- Typically refers to free text

- Images
- Other media files


## - Allows

- Keyword queries including operators
- More sophisticated "concept" queries e.g.,


## More in

find all web pages dealing with "drug abuse" Lecture 4

- Classic model for searching text documents
- No data is truly unstructured

More in

- Grammar

Lecture 7

- Semistructured search, e.g., XML

More in Manning Chapter 10

## Organizing Data

- Boolean queries only give inclusion or exclusion of docs.
- Clustering: Given a set of docs, group them into clusters based on their contents.


## More in

 Manning Chapter13-14

- Classification: Given a set of topics, plus a new doc $D$, decide which topic(s) $D$ belongs to.
- Ranking: Can we learn how to best order a set of

DD2476 Lecture 1, February 4, 2014 documents, e.g., a set of search results

## More in <br> Lecture 4

## The Web and Its Challenges

- Unusual and diverse documents
- Unusual and diverse users, queries, information needs
- Beyond terms, exploit ideas from social networks
- E.g. link analysis More in

Lectures 5, 6

- How do search engines work? And how can we make them better?


## More in Lectures

$5,6,8,10,11$

Next

- HOUR 2: Johan Boye
- Lecture 2 (February 7, 10.15-12.00)
- B1
- Readings: Manning Chapter 2, 3
- Computer Assignment 1 (now - February 18)
- Register in Rapp: rapp.csc.kth.se/rapp
- Assignment description:
https://www.kth.se/social/course/DD2476


## Indexing pipeline

Documents

Byte stream

Token stream
Friends romans countrymen
friend roman countryman


## Documents

- What is a document, anyway?
- a file?
- an e-mail?
- an e-mail with attachments?
- a group of files (PPT or LaTeX as HTML pages)?
- a book?
- a chapter?
- a paragraph?
- a sentence?


## Documents

- Many different formats (html, text, Word, Excel, PDF, PostScript, ...), languages and character sets
- Multilinguality
- Swedish e-mail with English attachment


## Character formats

- Text encodings
- ASCII (de-facto standard from 1968), 7-bit (=128 chars, 94 printable). Most common on the www until Dec 2007.
- Latin-1 (ISO-8859-1), 8-bit, ASCII + 128 extra chars
- Unicode (109 000 code points)
- UTF-8 (variable-length encoding of Unicode)
- Page Description Languages
- PostScript (really a programming language)
- PDF (open standard since 1 July, 2008)
- DVI, DOC, ...


## Tokenization

- Input: "Friends, romans and countrymen"
- Output: tokens
- Friends
- romans
- countrymen
- Usually, spaces and punctuation delimits tokens
- But not always:
- San Francisco, Richard III, et cetera, ...
- http://www.kth.se, iboye@nada.kth.se
- :-)


## More tokenization issues

- Apostrophes:
- Finland's $\rightarrow$ Finland's? Finlands? Finland? Finland s?
- don't $\rightarrow$ don't ? don $t$ ? do not ? don $t$ ?
- One token or several?
- state-of-the-art $\rightarrow$ state-of-the-art? state of the art? state art?
- this is a don't-want-to-leave-bed day
- Microsoft Word
- Hewlett-Packard
- b-flat
- the San Francisco-Los Angeles flight


## Numbers

- Can contain spaces or punctuation
- 123456.7 or $123,456.7$ or 123456,7
- Often useful to index numbers (looking up error codes etc. on the web)
- +46 (8) 7906000
- 3/20/91 Mar. 12, 1991 20/3/91
- B-52
- My PGP key is 324a3df234cb23e
- 131.169.25.10


## Language-specific issues

- French:
- L’ensemble $\rightarrow$ Le ? L ? L' ?
- want un ensemble to match l'ensemble
- German and Swedish:
- compound words are not segmented
- Lebensversicherungsgesellschaftsangestellter (German)
- "Life insurance company employee"
- Försäkringsbolagsanställd (Swedish)
- beneficial to use a compound splitter


## Compound splitting

Can be achieved with finite-state techniques.


## Compound splitting

- In Swedish: försäkringsbolag (insurance company)
- bolag is the head
- försäkring is a modifier
- the $s$ is an infix
- This process can be recursive:
- försäkringsbolagslagen (the insurance company law)
- en is a suffix indicating definite form
- lag is the head
- the $s$ is an infix
- försäkringsbolag is the modifier


## Language－specific issues

－Chinese and Japanese have no spaces between words：
－莎拉波娃现在居住在美国东南部的佛罗里达。
－Not always guaranteed a unique tokenization
－Japanese have several alphabets
－Katakana and Hiragana（syllabic）
－Kanji（Chinese characters）
－Romaji（Western characters）
－All of these may be intermingled in the same sentence

## Language-specific issues

- Right-to-left languages
- Arabic, Hebrew, Farsi, Urdu, Pashtu, ...
- Some tokens (numbers, years, ... ) are read left-to-right

- 'Algeria achieved its independence in 1962 after 132 years of French occupation.'
- With Unicode, surface form is complex but stored form is straightforward


## Stop words

- Exclude the most common words
- In English: the, a, and, to, for, be, ...
- Little semantic content
- ~30\% of postings for top 30 words
- However:
- "Let it be", "To be or not to be", "The Who"
- "King of Denmark"
- "Flights to London" vs "Flights from London"
- Trend is to keep stop words: compression techniques means that space requirements are small


## Normalization

- Tokens $\rightarrow$ terms
- Term = normalized word form
- Terms are the atomic elements of indexing and search
- Normalization determine equivalence classes of words
- by deleting full stops: U.S.A $\rightarrow$ USA
- by deleting hyphens: co-operation $\rightarrow$ cooperation


## More normalization issues

- Diacritica:
- å, ä, ö, à, é, ê, ë, ç ,ñ, č, łt, ...
- Umlaut:
- Tübingen and Tuebingen, Österreich and Oesterriech
- Case folding: convert all letters to lowercase
- Even for Microsoft Word, UN, NATO, EU, etc.
- Assymetric normalization
- Enter: window Search: window, windows
- Enter: windows Search: Windows, windows, window
- Enter: Windows Search: Windows


## Lemmatization

- Map inflected form to its lemma (=base form)
- "The boys' cars are different colours" $\rightarrow$ "The boy car be different color"
- Requires language-specific linguistic analysis
- part-of-speech tagging
- morphological analysis
- Useful in morphologically rich languages, like Finnish:
- järjestelmättömyydellänsäkäänköhän
- "with its lack of organisation"


## Part-of-speech tagging

- "He usually quarrels" $\rightarrow$

He pers. pronoun
usually adverb
quarrels verb-pres-3rd pers

- "His usual quarrels" $\rightarrow$

His poss. pronoun
usual adjective
quarrels noun-plur-nom

## Stemming

- Don't do morphological or syntactic analysis, just chop off the suffixes
- No need to know that "foxes" is plural of "fox"
- Much less expensive than lemmatization, but can be very wrong sometimes
- stocks $\rightarrow$ stock, stockings $\rightarrow$ stock
- Stemming usually improves recall but lowers precision


## Porter's algorithm

- Rule-based stemming for English
- ATIONAL $\rightarrow$ ATE
- SSES $\rightarrow$ SS
- ING $\rightarrow \varepsilon$
- Some context-sensitivity
- (W>1) EMENT $\rightarrow \varepsilon$
- REPLACEMENT $\rightarrow$ REPLAC
- CEMENT $\rightarrow$ CEMENT


## Sum-up

- Reading, tokenizing and normalizing contents of documents
- File types and character encodings
- Tokenization issues: punctuation, compound words, word order, stop words
- Normalization issues: diacritica, case folding, lemmatization, stemming
- We're ready for indexing

