

System Planning 2014

Lecture 7, F7: Optimization

System Planning 2014

Lecture 7, F7: **Optimization** Course goals Appendix A Content:

- Generally about optimization
- Formulate optimization problems
- Linear Programming (LP)
- Mixed Integer Linear Programming (MILP)

Course Goals – Short term planning

- To pass the course,
 - the students should show that they are able to
 - formulate short-term planning problems of hydro-thermal power systems,
- To receive a higher grade
 - the students should also show that they are able to
 - create specialised models for short-term planning problems,
- Computation
 - Ability solving short-term planning problems essential
 - Computation, not a goal, not examined
 - Home assignments
 - give bonus points
 - some are mandatory

Optimization – Generally (1/2)

- Applied mathematics
- Application:
 - technology, science, economics, etc.
 - Something to be maximized or minimized
 - Profit, cost, energy, speed, losses
 - Given some constraints
 - Physical, technical, economical, legal, etc.

Optimization – Generally (2/2)

In general form $\begin{array}{ccc}
\min_{x} & f(x), \\
\text{subject to} & g(x) \leq b \\
& h(x) = c \\
& \underline{x} \leq x \leq \overline{x}
\end{array} \right\} \text{ Constraints}$

- f(x) objective function
- *x* **optimization variable** (multidimensional, e.g. vector)
- g(x), h(x) constraints (multidimensional, e.g. vector)
- \underline{x} , \overline{x} variable bounds (like the variable)

Optimization – Formulating problems (1/6)

- 1. Formulate it verbally:
 - 1. Think the problem through
- 2. Define denotations
 - 1. Which parameters and variables are needed?
- 3. Formulate the problem in equation form
 - 1. That is; define the objective and constraints

(2 and 3 are interrelated)

Optimization – Formulating problems (2/6)

Example:

- A corporation owns a number of factories
- How to deliver items to consumers?

Optimization – Formulating problems (3/6)

- 1. Formulate verbally:
 - 1. How to deliver the goods, while
 - 2. Minimizing the transport costs?
 - 3. Subject to:
 - 1.Each factory's production capacity limit
 - 2.Fulfil the consumer demand

Optimization – Formulating problems (4/6)

- 2. Define denotations:
 - 1. Indices and parameters:
 - 1. *m* factories, factory *i* has the capacity a_i
 - 2. *n* customers, customer *j* demands b_i units
 - 3. Transportation costs from factory *i* to customer *j* is c_{ij} per unit
 - 2. Variables
 - 1. Let x_{ij} , i = 1, ..., m, j = 1, ..., n denote the number of units transported from factory *i* to customer *j*

Optimization – Formulating problems (5/6)

3. Formulate the problem mathematically:

Objective function

• Transportation cost:

$$\sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$

Constraints

- Production capacity:
- Demand:
- Variable bounds:

$$\sum_{j=1}^{n} x_{ij} \le a_i \qquad i = 1...m$$
$$\sum_{i=1}^{m} x_{ij} \ge b_j \qquad j = 1...n$$

 $x_{ii} \ge 0$ i = 1...m, j = 1...n

Optimization – Formulating problems (6/6)

The optimization problem:

LP – Generally (1/2)

- Linear problems (LP-problems)
 - A class of optimization problems
 - Linear objective, linear constraints
- All LPs may be formulated (standard form): $\min c^T x$

subject to
$$Ax = b$$

 $x \ge 0$

LP – Generally (2/2)

- Various types of LP-problems explained
- Examples similar to those in Appendix A
- We will study:
 - Extreme points
 - Slack variables
 - No feasible solution
 - Inactive constraints
 - Unbounded problem
 - Degenerate problem
 - Flat optimum
 - Dual formulation
 - Solution methods

LP – Basic Example (1/2)

The problem:

min $z = 5x_1 + 10x_2$ subject to $x_1 + x_2 \ge 2$ $4x_1 + 12x_2 \ge 12$ $x_1 \ge 0, x_2 \ge 0$

LP – Basic Example (2/2)

Optimum at: $x_1 = 1.5$ $x_2 = 0.5$

Objective value: z = 12.5

LP – Extreme points

- "Corners" in feasible space
- Denoted extreme
 points
- Optimum always in extreme point(s)

LP – Slack variables (1/2)

- LP-problem in standard form: min $c^T x$ s.t. Ax = b $x \ge 0$
- Introduce slack variables
- All constraints can be equalities

LP – Slack variables (2/2)

- Without slack variables $(Ax \ge b)$:
- $x_1 + x_2 \ge 2$ $4x_1 + 12x_2 \ge 12$ $x_1 \ge 0, x_2 \ge 0$
- With slack variables (Ax = b):

$$x_{1} + x_{2} - x_{3} = 2$$

$$4x_{1} + 12x_{2} - x_{4} = 12$$

$$x_{1} \ge 0, x_{2} \ge 0, x_{3} \ge 0, x_{4} \ge 0$$

LP – Infeasible problem (1/2)

- Feasible space empty
- Bad formulation

$$\begin{array}{ll} \min & z = 5x_1 + 10x_2 \\ {\rm s.t.} & x_1 + x_2 \geq 2 \\ & 4x_1 + 12x_2 \geq 12 \\ & x_1 + x_2 \leq 1 \end{array} \\ & x_1 = 0, \ x_2 \geq 0 \end{array}$$
 Added constraint

LP – Inactive Constraints (1/2)

- Some constraints does not constrain
- Given the objective

 $\begin{array}{ll} \min & z=5x_1+10x_2\\ \mbox{subject to} & x_1+x_2\geq 2\\ & 4x_1+12x_2\geq 12\\ & x_1+x_2\leq 7\\ & x_1+x_2\leq 7\\ & x_1\geq 0, \ x_2\geq 0 \end{array}$ Added constraint

LP – Unbounded Problem (1/2)

LP – Degenerate solution (1/2)

More than one extreme point optimal \bullet New objective All linear combination of these optimal • function min $z = 10x_1 + 10x_2$ subject to $x_1 + x_2 \ge 2$ $4x_1 + 12x_2 \ge 12$ $x_1 \ge 0, x_2 \ge 0$

LP – Degenerate solution (2/2)

LP – Flat optimum (1/2)

Extreme points with similar objective values min $z = 10x_1 + 9.99x_2$ New objective function subject to $x_1 + x_2 \ge 2$ $4x_1 + 12x_2 \ge 12$ $x_1 \ge 0, x_2 \ge 0$

LP – Flat optimum (2/2)

LP – Duality (1/5)

Any LP problem (primal problem) has a corresponding dual problem

Primal problem:		Dual pro	Dual problem:	
\min_{x}	$c^T x$	\max_{λ}	$b^{ \mathrm{\scriptscriptstyle T}} \lambda$	
subject to	Ax = b	subject to	$A^T \lambda \leq c$	
	$x \ge 0$		$\lambda \ge 0$	

 λ is said to be a *dual variable*

LP – Duality (2/5)

Theorem (strong duality):

"If the primal problem has an optimal solution, then also the dual problem has an optimal solution. The objective values of these two problems equals."

LP – Duality (3/5)

One dual variable for each constraint!

- Question:
 - What dual variables technically describe?
- Answer:
 - Marginal value of the corresponding constraint
 - i.e. objective value's dependence on (RHS')

LP – Duality (4/5)

In optimum: $\lambda_1 > 0$ (active) $\lambda_2 > 0$ (active) $\lambda_3 = 0$ (inactive)

LP – Duality (5/5)

- Dual variables: λ
- Small perturbations in the right-hand-side, Δb
- ⇒
- Changes in the objective value, Δz :

$$\Delta z = \lambda^T \Delta b$$

MILP – Generally

- Mixed Integer Linear
 Programming problems
- Class of optimization
 problems
- Linear objective functions and linear constraints
- Some variables may be integers

 $\min_{x} z = c^{T} x$ such that Ax = b $x \ge 0$ $x_{i} \in \mathbb{R}, i \in \{1, 2, ..., m\}$ $x_{i} \in \mathbb{Z}, i \in \{m+1, m+2, ..., n\}$ |i| = n

Optimum at: $x_1 = 1$ (1.5) $x_2 = 1$ (0.5)

Optimal objective: z = 15 (12.5)

MILP – Solution

- Integer variables are easily implemented
- Integer problems generally hard to solve
- Computation time may increase exponentially
- If possible, avoid integer variables!
- Special case integer variable: binary variable

$$x \in \{0,1\}$$

MILP – Applying Binary Variable (1/6)

- Minimize cost buying certain product
- Variable, $x \ge 0$: amount of the product,
- Decreasing marginal cost, e.g.:
 - Economies of scale
 - (outside this course, square root)
 - Volume discount

MILP – Applying Binary Variable (2/6)

- Split *x* up in two variables
- $x = x_1 + x_2$
- $x_1 \leq x_b$
- $z = c_1 x_1 + c_2 x_2$
- $c_1 > c_2$

MILP – Applying Binary Variable (3/6)

- Segment 2 cheaper
- Prevent x₂ being positive as long
- $x_1 < x_b$
- Typically done by using binary variable

MILP – Applying Binary Variable (4/6)

- Introduce the binary variable *s*
- And the constraints

$$x_1 - x_b s \ge 0$$
$$-x_2 + Ms \ge 0$$

• Note: In real-life, M not arbitrary

MILP – Applying Binary Variable (5/6)

- Sizing of parameter M
- Not a part of the course

 $M = \min_{m} m,$ subject to: $\min z = (-x_2 + m)$

$$\left(-x_2+m\right) \ge 0$$

m > 0

• Or, simpler

$$\mathbf{M} = -\min_{x_2} \left(-x_2 \right)$$

MILP – Applying Binary Variable (6/6)

End of lecture 7

Next time short-term planning

