System Planning 2014

Lecture 7, F7: Optimization

System Planning 2014

Lecture 7, F7: Optimization Course goals Appendix A
Content:

- Generally about optimization
- Formulate optimization problems
- Linear Programming (LP)
- Mixed Integer Linear Programming (MILP)

Course Goals - Short term planning

- To pass the course,
- the students should show that they are able to
- formulate short-term planning problems of hydro-thermal power systems,
- To receive a higher grade
- the students should also show that they are able to
- create specialised models for short-term planning problems,
- Computation
- Ability solving short-term planning problems essential
- Computation, not a goal, not examined
- Home assignments
- give bonus points
- some are mandatory

Optimization - Generally (1/2)

- Applied mathematics
- Application:
- technology, science, economics, etc.
- Something to be maximized or minimized
- Profit, cost, energy, speed, losses
- Given some constraints
- Physical, technical, economical, legal, etc.

Optimization - Generally (2/2)

In general form

$$
\left.\begin{array}{ll}
\min _{x} & f(x), \\
\text { subject to } & g(x) \leq b \\
& h(x)=c \\
\underline{x} \leq x \leq \bar{x}
\end{array}\right\} \text { Constraints }
$$

- $f(x)$ objective function
- x optimization variable (multidimensional, e.g. vector)
- $g(x), h(x)$ constraints (multidimensional, e.g. vector)
- \underline{x}, \bar{x}
variable bounds (like the variable)

Optimization - Formulating problems (1/6)

1. Formulate it verbally:
2. Think the problem through
3. Define denotations
4. Which parameters and variables are needed?
5. Formulate the problem in equation form
6. That is; define the objective and constraints
(2 and 3 are interrelated)

Optimization - Formulating problems (2/6)

Example:

- A corporation owns a number of factories
- How to deliver items to consumers?

Optimization - Formulating problems (3/6)

1. Formulate verbally:
2. How to deliver the goods, while
3. Minimizing the transport costs?
4. Subject to:
1.Each factory's production capacity limit
2.Fulfil the consumer demand

Optimization - Formulating problems (4/6)

2. Define denotations:
3. Indices and parameters:
4. m factories, factory i has the capacity a_{i}
5. n customers, customer j demands b_{j} units
6. Transportation costs from factory i to customer j is $c_{i j}$ per unit
7. Variables
8. Let $x_{i j}, i=1, \ldots, m, j=1, \ldots, n$ denote the number of units transported from factory i to customer j

Optimization - Formulating problems (5/6)

3. Formulate the problem mathematically:

Objective function

- Transportation cost: $\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}$

Constraints

- Production capacity: $\quad \sum_{j=1}^{n} x_{i j} \leq a_{i} \quad i=1 \ldots m$
- Demand:

$$
\sum_{i=1}^{m} x_{i j} \geq b_{j} \quad j=1 \ldots n
$$

- Variable bounds:

$$
x_{i j} \geq 0 \quad i=1 \ldots m, j=1 \ldots n
$$

Optimization - Formulating problems (6/6)

The optimization problem:

$$
\begin{array}{lll}
\min & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} & \\
\text { s.t. } & \sum_{j=1}^{n} x_{i j} \leq a_{i}, & i=1 \ldots m \\
& -\sum_{i=1}^{m} x_{i j} \leq-b_{j}, & j=1 \ldots n \\
& x_{i j} \geq 0, & i=1 \ldots m, j=1 \ldots n
\end{array}
$$

LP - Generally (1/2)

- Linear problems (LP-problems)
- A class of optimization problems
- Linear objective, linear constraints
- All LPs may be formulated (standard form):

$\min C^{T} X$

subject to $A x=b$

$$
x \geq 0
$$

LP - Generally (2/2)

- Various types of LP-problems explained
- Examples similar to those in Appendix A
- We will study:
- Extreme points
- Slack variables
- No feasible solution
- Inactive constraints
- Unbounded problem
- Degenerate problem
- Flat optimum
- Dual formulation
- Solution methods

LP - Basic Example (1/2)

The problem:

$$
\begin{array}{ll}
\min & z=5 x_{1}+10 x_{2} \\
\text { subject to } & x_{1}+x_{2} \geq 2 \\
& 4 x_{1}+12 x_{2} \geq 12 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

LP - Basic Example (2/2)

Optimum at:

$$
\begin{aligned}
& x_{1}=1.5 \\
& x_{2}=0.5
\end{aligned}
$$

Objective value:

$$
z=12.5
$$

LP - Extreme points

- "Corners" in feasible space
- Denoted extreme points
- Optimum always in extreme point(s)

LP - Slack variables (1/2)

- LP-problem in standard form:

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

- Introduce slack variables
- All constraints can be equalities

LP - Slack variables (2/2)

- Without slack variables $(A x \geq b)$:

$$
\begin{aligned}
& x_{1}+x_{2} \geq 2 \\
& 4 x_{1}+12 x_{2} \geq 12 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

- With slack variables $(A x=b)$:

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=2 \\
& 4 x_{1}+12 x_{2}-x_{4}=12 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0
\end{aligned}
$$

LP - Infeasible problem (1/2)

- Feasible space empty
- Bad formulation

$$
\begin{array}{ll}
\min & z=5 x_{1}+10 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \geq 2 \\
& 4 x_{1}+12 x_{2} \geq 12 \\
& x_{1}+x_{2} \leq 1 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array} \text { Added constraint }
$$

LP - Infeasible problem (2/2)

LP - Inactive Constraints (1/2)

- Some constraints does not constrain
- Given the objective

$$
\min \quad z=5 x_{1}+10 x_{2}
$$

subject to $\quad x_{1}+x_{2} \geq 2$

$$
\begin{aligned}
& 4 x_{1}+12 x_{2} \geq 12 \quad \text { Added constraint } \\
& x_{1}+x_{2} \leq 7 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

LP - Unbounded Problem (1/2)

- If no constraint is active
- The objective is unbounded
- $z \rightarrow \infty$

$$
\begin{aligned}
\min & z=-x_{1}-x_{2} \\
\text { subject to } & x_{1}+x_{2} \geq 2 \\
& 4 x_{1}+12 x_{2} \geq 12 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

LP - Unbounded Problem (2/2)

LP - Degenerate solution (1/2)

- More than one extreme point optimal
- All linear combination of these optimal

New objective

$$
\min z=10 x_{1}+10 x_{2}
$$

subject to $\quad x_{1}+x_{2} \geq 2$

$$
\begin{aligned}
& 4 x_{1}+12 x_{2} \geq 12 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

LP - Degenerate solution (2/2)

LP - Flat optimum (1/2)

Extreme points with similar objective values

$$
\min z=10 x_{1}+9.99 x_{2} \longleftarrow \begin{aligned}
& \text { objective } \\
& \text { function }
\end{aligned}
$$

subject to $\quad x_{1}+x_{2} \geq 2$

$$
\begin{aligned}
& 4 x_{1}+12 x_{2} \geq 12 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

LP - Flat optimum (2/2)

LP - Duality (1/5)

Any LP problem (primal problem) has a corresponding dual problem

\[

\]

λ is said to be a dual variable

LP - Duality (2/5)

Theorem (strong duality):
"If the primal problem has an optimal solution, then also the dual problem has an optimal solution. The objective values of these two problems equals."

LP - Duality (3/5)

min

subject to $c^{T} X$

- Question:
- What dual variables technically describe?
- Answer:
- Marginal value of the corresponding constraint

One dual variable for each constraint!

- i.e. objective value's dependence on (RHS)

LP - Duality (4/5)

In optimum:
$\lambda_{1}>0$ (active)
$\lambda_{2}>0$ (active)
$\lambda_{3}=0$ (inactive)

LP - Duality (5/5)

- Dual variables: λ
- Small perturbations in the right-hand-side, Δb
- \Rightarrow
- Changes in the objective value, Δz :

$$
\Delta z=\lambda^{T} \Delta b
$$

MILP - Generally

- Mixed Integer Linear Programming problems
- Class of optimization problems
- Linear objective functions and linear constraints
- Some variables may be integers

$$
\min _{x} z=c^{T} x
$$

such that $A x=b$

$$
x \geq 0
$$

$$
x_{i} \in \mathbb{R}, i \in\{1,2, \ldots, m\}
$$

$$
x_{i} \in \mathbb{Z}, i \in\{m+1, m+2, \ldots, n\}
$$

$$
|i|=n
$$

MILP - Example

MILP - Solution

- Integer variables are easily implemented
- Integer problems generally hard to solve
- Computation time may increase exponentially
- If possible, avoid integer variables!
- Special case integer variable: binary variable

$$
x \in\{0,1\}
$$

MILP - Applying Binary Variable (1/6)

- Minimize cost buying certain product
- Variable, $x \geq 0$: amount of the product,
- Decreasing marginal cost, e.g.:
- Economies of scale
- (outside this course, square root)
- Volume discount

MILP - Applying Binary Variable (2/6)

- Split x up in two variables
- $x=x_{1}+x_{2}$
- $x_{1} \leq x_{b}$
- $z=c_{1} x_{1}+c_{2} x_{2}$
- $c_{1}>c_{2}$

MILP - Applying Binary Variable (3/6)

- Segment 2 cheaper
- Prevent x_{2} being positive as long
- $x_{1}<x_{b}$
- Typically done by using binary variable

MILP - Applying Binary Variable (4/6)

- Introduce the binary variable s
- And the constraints

$$
\begin{aligned}
x_{1}-x_{b} s & \geq 0 \\
-x_{2}+M s & \geq 0
\end{aligned}
$$

- Note: In real-life, M not arbitrary

MILP - Applying Binary Variable (5/6)

- Sizing of parameter M
- Not a part of the course

$$
\mathrm{M}=\min _{m} m
$$

subject to:

$$
\begin{aligned}
\min _{x_{2}} z & =\left(-x_{2}+m\right) \\
\left(-x_{2}+m\right) & \geq 0 \\
m & >0
\end{aligned}
$$

- Or, simpler

$$
\mathrm{M}=-\min _{x_{2}}\left(-x_{2}\right)
$$

MILP - Applying Binary Variable (6/6)

$$
\begin{aligned}
& x_{1}-x_{b} s \geq 0 \\
& -x_{2}+M s \geq 0
\end{aligned}
$$

If $s=0$:
$x_{1} \geq 0, \quad-x_{2} \geq 0 \Leftrightarrow x_{2} \leq 0 \Rightarrow x_{2}=0$
If $s=1$:

$$
x_{1}-x_{b} \geq 0, \Leftrightarrow x_{1} \geq x_{b} \Rightarrow x_{1}=x_{b}
$$

$$
-x_{2}+M \geq 0 \Leftrightarrow x_{2} \leq M
$$

End of lecture 7

Next time short-term planning

