

# **System Planning 2014**

Lecture 8, L8:

Short-term planning of hydro power systems





## System planning 2014

- Short-term planning of hydro power systems
- Chapter 5.1-5.2.4 (actually 5.2.1-5.2.4)
- Content:
  - Generally about short-term planning,
  - Generally about hydropower
  - Electricity Production
  - Hydrological coupling
  - Hydro power planning



### Generally about hydro power planning (1/3)

- What is short-term planning?
  - Timeframe: 24 hours 1 week
  - In this course: Hourly planning
  - Minimize costs, maximize profit
- Results:
  - Operation schedules for the power plants
  - Trade on the electricity market
- Limiting factors planning the operation:
  - Technological/Physical
  - Economical/Juridical



### Generally about hydro power planning (2/3)

- A generally formulated short-term planning program:
- Maximize
  - Incomes during the studied period
  - (Expected) future incomes
- Minimize
  - Costs during the studied period
  - (Expected) future costs
- Continued ...



### Generally about hydro power planning (3/3)

- Continues ...
- Subject to
  - Physical constraints,
  - Juridical constraints, e.g.
    - Water-right judgements
    - Emission certificates
- This results in an optimization problem
- This course: deterministic models



### Generally about hydro power (1/5)

- Produces electricity by potential energy differences
- Reservoirs common also for streaming water



#### Generally about hydro power (2/5)

#### Typical construction with low head





#### Generally about hydro power (3/5)

#### Typical construction with high head





### Generally about hydro power (4/5)

- Necessary variables in hydro power planning
  - Discharge, Q
  - Spillage, S
  - Reservoir content, M
  - Generated power, H(Q)
- Variables expressed in "hour equivalents", HE (SE: TE)
  - 1 HE means:
  - Discharge & spillage:

flow 
$$1 \frac{m^3}{s}$$
 during 1 h

• Reservoir content:

**volume** corresponding to flow 1  $\frac{m^3}{s}$  during 1 h



#### Generally about hydro power (5/5)



#### Uddby Hydro Power Plant, Tyresö



Turbine

- Maximal discharge:
- Minimal spillage:





- Q, discharge
- H(Q), power production function of discharge
- $\gamma(Q) = \frac{H(Q)}{Q}$ , production equivalent (efficiency)
- $\mu(Q) = \frac{dH(Q)}{dQ}$ , marginal production equivalent
  - Marginal production change for altered discharge



• 
$$\eta(Q) = \frac{\gamma(Q)}{\gamma_{\max}}$$
, relative efficiency,

• normalized production equivalent

• 
$$\gamma_{\max} = \max_{Q} \gamma(Q)$$









- H(Q), power production function of discharge
- Not linear
- What to do?













 $\gamma(Q) = \frac{H(Q)}{Q}$ , production equivalent (efficiency)





- $\gamma(Q) = \frac{H(Q)}{Q}$ , production equivalent (efficiency)
- Why is this?
- Why not equally high peaks?





- $\gamma(Q) = \frac{H(Q)}{Q}$ , production equivalent (efficiency)
- Why is this?
- Why not equally high peaks?
- Turbines
  - Needs some discharge
  - Peak efficiency a design parameter
  - Next turbine starts
  - (Thomas Sandberg, KTH)





- $\gamma(Q) = \frac{H(Q)}{Q}$ , production equivalent (efficiency)
- Why is this?
- Why not equally high peaks?
- Friction losses in tunnels
  - Headrace
  - Tailrace
  - $P_L \propto Q^2$
  - (Anders Wörman, KTH)

• But,  $P_G \propto Q$ 





- $\gamma(Q) = \frac{H(Q)}{Q}$ , production equivalent (efficiency)
- *H*(*Q*), power production function of discharge
- Not linear
- What to do?
- Use efficiency peaks for segmentation





- $\gamma(Q) = \frac{H(Q)}{Q}$ , production equivalent (efficiency)
- Use peaks for segmentation
- **Piecewise linear approximation**
- Each segment constant marginal production equivalent (slopes)
- Validity?





 $\mu(Q) = \frac{dH(Q)}{dQ}$ , marginal production equivalent









$$\mu(Q) = \frac{dH(Q)}{dQ}$$
, marginal production equivalent











• Total discharge, power station *i*, hour *t* 

$$Q_{i,t} = \sum_{j=1}^{n_i} Q_{i,j,t}$$

•  $Q_{i,j,t}$ , discharge, station *i*, segment *j*, hour *t* 



• Total power production, power station *i*, hour *t* 

$$H_{i,t} = \sum_{j=1}^{n_i} \mu_{i,j} Q_{i,j,t}$$

•  $\mu_{i,j}$ , marginal production equivalent, station *i*, segment *j* 



- How to assure ordered segment activation?
- Not an issue here
- $\mu_{i,j} > \mu_{i,j+2}$
- We maximize income
- Last lecture we treated consumption
- Sometimes binaries not needed!





### Forbidden discharges (1/5)

- Small discharges low efficiency
- Not considered in piecewise linear model
- *Primarily* a problem in first segment
- Avoid low discharges
- Introduce binary variables



### Forbidden discharges (2/5)

- Production equivalent according to figure
- Compare with slide 16
- Low efficiency below 50 HE
- Either above 50 HE or nothing
- Piecewise linear model





lacksquare

### Forbidden discharges (3/5)



- Average of remaining ۲ allowed interval
- Question: Higher or lower • than before?



### Forbidden discharges (4/5)

• Binary variables,  $z_{i,t}$ , each segment and time-step

• 
$$z = \begin{cases} 0, & Q = 0 \text{ HE} \\ 1, & Q \ge 50 \text{ HE} \end{cases}$$

• Total discharge and production given by:

$$Q_{i,t} = 50z_{i,t} + Q_{K,i,t}$$
$$H_{i,t} = 50\mu_{K,i,t}z_{i,t} + \mu_{K,i}Q_{K,i,t}$$



### Forbidden discharges (5/5)

- Constraints ensuring no discharge when z = 0
- $Q_{K,i,t} \leq \overline{Q_{K,i}} z_{i,t}$
- Variable limits:

$$0 \le Q_{K,i,t}$$
$$z_{i,t} \in \{0,1\}$$



## The planning problem (1/3)

- Maximize
  - Incomes during period
  - Assets after end of period
- Minimize
  - Production costs during period
- Subject to
  - Hydrological coupling
  - Laws and regulations
  - (Other) physical limitations



## The planning problem (2/3)

- Production costs neglectable
  - Very small
  - Remember from electricity pricing?
- Incomes during period
  - Sales on spot market
  - Bilateral sales to customer
  - $\sum_{t=1}^{T} \lambda_t H_{i,t}$
  - Where,  $\lambda_t$ , denotes the price



### The planning problem (3/3)

- Assets after end of period
  - Stored water
  - Expected future price
  - Expected future production
- Value of stored water at station *i*

• 
$$B_i(M_{i,T}) = \lambda_e M_{i,T} \sum_{j \in N_i} \gamma_j$$

- $\lambda_e$ , expected future price
- $M_{i,T}$ , reservoir content at end of period
- $N_i$ , set of indices for downstream stations
- $\gamma_j$ , expected future production equivalent



## Hydrologic Coupling (1/5)

- Hydropower stations in a river dependent
- Operation of a station affect others
- The interrelations need to be considered





### Hydrologic Coupling (2/5)







### Hydrologic Coupling (3/5)





### Hydrologic Coupling (4/5)

- Time consumed water flowing between stations *j*, *i*,  $\tau_{j,i}$
- From *j* to closest downstream station *i*
- Complicated relations of  $\tau_{j,i}$ 
  - Water flows
  - Reservoir levels
  - Etc.
- Assume constant water delay times,  $\tau_i$ 
  - $h_j$  hours,  $m_j$  minutes



### Hydrologic Coupling (5/5)





#### Legal and physical constraints (1/2)

- Power station limitations
  - Laws and regulations
    - water-rights judgement
    - water-rights judgement
    - etc.
  - Physical limitations
- Variable limits
  - $\underline{Q}_i \leq Q_{i,t} \leq \overline{Q}_i$
  - $\underline{M}_i \leq M_{i,t} \leq \overline{M}_i$
  - $\underline{M}_{i,T} \le M_{i,T} \le \overline{M}_{i,T}$
  - $\underline{M}_{i,T}$  and  $\overline{M}_{i,T}$  could be more constraining



### Legal and physical constraints (2/2)

- Contracts with customer(s)
- $\sum_{i \in I} H_{i,t} \ge D_t$
- Equality also occurs
- $H_{i,t}$ , production
- $D_t$ , contracted load



### Planning problem – Example (1/7)

- Two hydropower station
  - Located after each other in river
  - All power sold on power exchange
  - Plan the 6 following hours
- Known
  - Expected price,  $\lambda_t$ , for t = 1, 2, ..., 6
  - Stored water after t = 6 sold at  $\lambda_f$
  - Reservoirs are half full at start





### Planning problem – Example (2/7)

- Known
  - Installed capacity,  $\overline{H}_i$ , i = 1,2
  - Maximal discharge,  $\overline{Q}_i$ , i = 1,2
  - Maximal reservoir contents,  $\overline{M}_i$ , i = 1,2
  - Local hydro inflow,  $V_i$ , i = 1,2
- Assumptions
  - Constant efficiency,  $\gamma(Q) = \frac{H(Q)}{Q} = \frac{\gamma Q}{Q} = \gamma$
  - Gives linear production function,  $H(Q) = \gamma Q$





### Planning problem – Example (3/7)

- Assumptions
  - Constant efficiency,  $\gamma(Q) = \frac{H(Q)}{Q} = \frac{\gamma Q}{Q} = \gamma$
  - Gives linear production function,  $H(Q) = \gamma Q$
  - Gives constant production equivalent,  $\mu(Q) = \frac{d\gamma Q}{dQ} = \gamma = \mu$
  - Installed capacity reached at maximal discharge

• Gives 
$$\gamma_i = \frac{\overline{H}_i}{\overline{Q}_i}$$
,  $i = 1, 2$ 





### Planning problem – Example (4/7)

- Solution
  - Maximize
    - Income from sold power
    - Value of stored water
  - Subject to
    - Hydrological coupling





#### Planning problem – Example (5/7)

- Variables
  - Discharge,  $Q_{i,t}$ ,  $i \in \{1,2\}$ ,  $t \in \{1,2, \dots, 6\}$
  - Spillage,  $S_{i,t}$ ,  $i \in \{1,2\}$ ,  $t \in \{1,2, ..., 6\}$
  - Reservoir content end of period t,  $M_{i,t}, i \in \{1,2\}, t \in \{1,2, \dots, 6\}$





#### Planning problem – Example (6/7)

- Objective function
  - Sold electricity,  $\sum_{t=1}^{6} \lambda_t \sum_{i=1}^{2} \gamma_i Q_{i,t}$
  - Stored water,  $\lambda_e [(\gamma_1 + \gamma_2)M_{1,6} + \gamma_2 M_{2,6}]$
  - Altogether:
  - $\sum_{t=1}^{6} \lambda_t \sum_{i=1}^{2} \gamma_i Q_{i,t} + \lambda_e [(\gamma_1 + \gamma_2) M_{1,6} + \gamma_2 M_{2,6}]$





#### Planning problem – Example (7/7)

- Hydrologic constraints
  - $M_{1,t} = M_{1,t-1} Q_{1,t} S_{1,t} + V_1$
  - $M_{2,t} = M_{2,t-1} Q_{2,t} S_{2,t} + Q_{1,t} + S_{1,t} + V_2$
- Variable limits
  - $0 \le Q_{i,t} \le \overline{Q}_i$
  - $0 \leq S_{i,t}$
  - $0 \le M_{i,t} \le \overline{M}_i$
- Where,  $M_{i,0} = 0.5\overline{M}_i$





#### Typical exam question, part 1 (1/2)

- Hydro station Språnget
  - Maximal discharge,  $100 \frac{m^3}{s}$
  - Best efficiency at discharge,  $70 \frac{m^3}{s}$
  - Maximal discharge, installed capacity generated, 20.8 MW
  - At best efficiency, 15.4 MW generated



### Typical exam question, part 1 (2/2)

- Assume
  - Piecewise linear generation model needed
  - Two segments needed
  - Breaking point at best efficiency
- Compute:
  - Marginal production equivalent for each segment
  - Maximal discharge, each segment



#### **Typical exam question, part 2**

- Power plant indices,  $i \in \{1,2,3\}$ 
  - Strömmen 1,
  - Fallet 2,
  - Språnget 3
- Segment indices,  $j \in \{1,2\}$
- Time (hour) indices,  $i \in \{1, 2, \dots, 24\}$





#### Typical exam question, part 2

- Given
  - $M_{i,0}$ , reservoir content at start
  - *M<sub>i,t</sub>*, reservoir content, end of period *t*
  - $Q_{i,j,t}$ , discharge, plant *i*, segment *j*, during *t*





### Typical exam question, part 2

- Given
  - $M_{i,0}$ , reservoir content at start
  - $M_{i,t}$ , reservoir content at end of t
  - $Q_{i,j,t}$ , discharge, plant *i*, segment *j*, during *t*

Strömmen

Fallet

Språnget

- $S_{i,t}$ , spillage, reservoir *i*, during *t*
- $V_{i,t}$ , local inflow, reservoir *i*, during *t*
- Using given information
  - Formulate hydrological constraints
  - Neglect water delay times



# **End of lecture 8**

#### Next time thermal short-term planning

