

System planning 2014

Lecture 9, L9: Short-term planning of thermal power plants

System planning 2014

- Lecture 9, L9:
 - Short-term planning of thermal power plants
 - Chapters 5.3.1-5.3.3
- Content:
 - Generally about thermal power plants
 - Production costs
 - Start-up costs
 - Minimally allowed operation and stopping times
 - Constrained production changes

Generally about thermal power plants

- Produces electricity through combustion of fuel
 - Oil/petroleum
 - Gas
 - Coal
 - Uranium
- Larger plants, steam cycle

Generally about thermal power plants

Generally about thermal power plants

Production costs

- Fuel usage
- Efficiency not constant

•
$$F(G) = \frac{G}{h\eta(G)}$$

- F(G), fuel consumption, $\left[\frac{\text{tonne}}{h} \text{ or } \frac{m^3}{h}\right]$
- *G*, electricity production $\left[\frac{MWh}{h}\right]$
- *h*, heat content $\left[\frac{\text{MWh}}{\text{tonne}} \text{ or } \frac{\text{MWh}}{\text{m}^3}\right]$
- $\eta(G)$, efficiency at given consumption level

Production costs

• Let φ denote the fuel price

• Production cost,
$$C(G) = \varphi F(G) = \varphi \frac{G}{h\eta(G)}$$

- Nonlinear cost function
- Often approximated to $C(G) = \alpha + \beta G + \gamma G^2$
- We use linear approximation $C(G) = \beta G$

Operational constraints

- Changed fuel supply
 - No immediate production change (large plants)
- Operational constraints
 - Start-up times, start-up costs
 - Lowest allowed operation and stop times
 - Constrained production changes

Start-up costs (1/9)

- Operational plant, limited by installed capacity
- Offline plant, no generation
- $G_{g,t} \le u_{g,t} \bar{G}_g$
 - $G_{g,t}$, generation, plant g, hour t
 - $u_{g,t}$, operation mode, 0 off, 1 on
 - \bar{G}_g , peak production, plant g

Start-up costs (2/9)

- In operation, possibly bounded from below
 - $G_{g,t} \ge u_{g,t}\underline{G}_g$
 - \underline{G}_g , minimal production, plant g

Start-up costs (3/9)

- Start-up thermal of plant
 - Implies fuel costs for heating-up plant
 - Certain operational temperature needed
- Fuel usage, depends om time unused
- $C_{start}(t) = C_{cold}(1 e^{-t/\tau}) + C_{fix}$
 - $C_{start}(t)$, start-up cost t hours unused
 - *C_{cold}*, cost boiler at room temperature
 - τ , time constant for cooling
 - C_{fix} , time-independent start-up cost

Start-up costs (4/9)

- Can be profitable not stop combustion
- If out of production short time
- Combustion reduced to minimum, e.g. idling
- No electricity produced when idling
- $C_{start} = C_{idle}t$
- *C_{idle}*, hourly idling cost

Start-up costs (5/9)

- Binary variables needed considering start-up
- 1 means operational, 0 off-line
- Cost depends on stop time duration
 - Different binaries for different stop times
 - Assume two categories are enough
 - $s_{g,t}^*$, off-line for one hour
 - $s_{g,t}^{**}$, off-line at least two hours

$$- s_{g,t}^*, s_{g,t}^{**} \in \{0,1\}$$

Start-up costs (6/9)

- Total start-up cost of planning period
- $\sum_{\substack{t \in T \\ g \in G}} C_g^* s_{g,t}^* + C_g^{**} s_{g,t}^{**}$
 - C_g^* , start-up cost, plant g, 1h stop
 - C_g^{**} , start-up cost, plant g, \geq 2h stop
- Solver will minimize binaries
 - Constraints needed
 - Exploit abovementioned fact, greater or equal

Start-up costs (7/9)

- Necessary constraints
 - $s_{g,t}^* \ge u_{g,t} u_{g,t-1} s_{g,t}^{**}$

•
$$s_{g,t}^{**} \ge u_{g,t} - u_{g,t-1} - u_{g,t-2}$$

Minimal operation and stop times (1/3)

- We often use constant start-up cost
- For simplicity
- Alternative model, similar aim
 - Instead of variable start-up costs
 - Prohibit switching back and forth
- Two binary variables
 - $s_{g,t}^+$, indicates start-up in period before t
 - $s_{g,t}^-$, indicates stopping in period before t

Minimal operation and stop times (2/3)

- Total start-up and stopping cost
 - $\sum_{\substack{t \in T \\ g \in G}} C_g^+ s_{g,t}^+ + C_g^- s_{g,t}^-$
 - $-C_g^+$, start-up cost, plant g
 - C_g^- , stopping cost, plant g
- Constraints forcing binary variables necessary
 - $u_{g,t} u_{g,t-1} = s_{g,t}^+ s_{g,t}^-$
 - Can find inequality alternative? KTH Social!

Minimal operation and stop times (3/3)

• Constraints, minimal operation and stop times

•
$$s_{g,t}^+ + \sum_{k=t}^{t+\underline{t}_g^+-1} s_{\overline{g},k}^- \le 1$$

•
$$s_{g,t}^- + \sum_{k=t}^{t+\underline{t}_g^- - 1} s_{g,k}^+ \le 1$$

- Where
 - Minimal allowed operation time, \underline{t}_{g}^{+} , plant g
 - Minimal allowed stop time, \underline{t}_{g}^{-} , plant g

Limited production changes (1/2)

- Production cannot change instantaneously
- Necessary constraining production changes over time
 - $\bar{\Delta}_{g}^{G+}$, maximal production time-increment, plant g
 - $\bar{\Delta}_{g}^{G-}$, maximal production time-decrement, plant g
- Note! At start-up ...
 - Maximal production time-increment possibly larger
 - \overline{G}_g^1 , start-up permission threshold, plant g
- Analogously when stopping ...

Limited production changes (2/2)

• Corresponding constraints

•
$$G_{g,t} - G_{g,t-1} \le \overline{\Delta}_g^{G^+} + s_{g,t}^+ \left(\overline{G}_g^1 - \overline{\Delta}_g^{G^+}\right)$$
, increments

•
$$G_{g,t-1} - G_{g,t} \leq \overline{\Delta}_g^{G-} + s_{g,t}^{-} \left(\overline{G}_g - \overline{\Delta}_g^{G-}\right)$$
, decrements

Typical exam question, part 1 (1/2)

- Thermal plant Flisinge
 - Fuel costs, $200 \frac{\pi}{m^3}$
 - Fuel density, 400 $\frac{\text{kg}}{\text{m}^3}$
 - Fuel heat content, $5 \frac{MWh}{ton}$
 - Flisinge efficiency, 40 %
- Provide the production cost function

End of lecture 9

Next time dual variable applications & GAMS

