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COURSE OBJECTIVES 
To pass the course, the students should show that they 
are able to

- apply both probabilistic production cost simulation 
and Monte Carlo simulation to calculate expected 
operation cost and risk of power deficit in an 
electricity market.

To receive a higher grade (A, B, C, D) the students should 
also show that they are able to

- create specialised models both for probabilistic 
production cost simulation and Monte Carlo 
simulation, and to use the results of an electricity 
market simulation to judge the consequences of 
various actions in the electricity market.
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PROBABILITY DISTRIBUTIONS 
AND EXPECTATION VALUES 
The probability distribution of a random variable 
can be described using the density function, 
fX(x).
The expectation value of a discrete random 
variable is then

E[X] = xfX x .
x

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PROBABILITY DISTRIBUTIONS 
AND EXPECTATION VALUES 
Example

E[X] = 0.4·1 + 0.3·2 + 0.2·3 + 0.1·4 = 2.

4
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PROBABILITY DISTRIBUTIONS 
AND EXPECTATION VALUES 
An alternative approach to describe probability 
distribution is to consider a random variable, X, 
as a population of individual units:

x1, …, xN,

where
xi = outcome of X for unit i,
N = number of units in the population.
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PROBABILITY DISTRIBUTIONS 
AND EXPECTATION VALUES 
Using this alternative approach, the expectation 
value of a discrete random variable can be 
written as

E[X] = 
1
N
---- xi.

i 1=

N


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PROBABILITY DISTRIBUTIONS 
AND EXPECTATION VALUES 
Example

E[X] = (1 + 1 + 1 + 1 + 2 + 2 + 2 + 3 + 3 + 4) = 2.
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SIMPLE SAMPLING 
Theorem 6.21. If there are n independent
observations, x1, …, xn, of the random
variable X then the mean of these obser-
vations, i.e., 

is an estimate of E[X].

mX
1
n
--- xi

i 1=

n

=
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SIMPLE SAMPLING 

Compare E[X] =  and 

• Simple sampling means that a limited number 
of random observations are evaluated instead 
of the whole population!

1
N
---- Xi

i 1=

N

 mX
1
n
--- xi.

i 1=

n

=
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SIMPLE SAMPLING 
• Notice that the estimate mX is also a random 

variable!
• E[mX] = E[X]

(If not, the estimate would be biased.)
• Var[mX] is given by the following theorem:

Theorem 6.22. The variance of the esti-
mate from simple sampling is

Var mX  Var X 
n

------------------.=
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SIMPLE SAMPLING - Accuracy
The variance of the estimate, Var[mX], is inter-
esting because it states how much an estimate 
might deviate from the true value.

Here mX1 is likely to be less accurate than mX2.

x

X

x

X

fmX1 fmX2
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SIMPLE SAMPLING - Precision
The practical conclusion of theorem 6.22 is that 
if the number of samples is increased, it is likely 
that we get a result close to the real value.

Example 6.20—Problem
Let Ci be the result of tossing a coin:

Heads  Ci = 1
Tails  Ci = 0

What is the probability distribution of 

Hn = mC = 
1
n
--- ci?

i 1=

n


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SIMPLE SAMPLING - Accuracy
Example 6.20—Solution
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SIMPLE SAMPLING - Accuracy
Example 6.20—Solution
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SIMPLE SAMPLING - Accuracy
Example 6.20—Solution
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SIMPLE SAMPLING - Accuracy
Example 6.20—Solution
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SIMPLE SAMPLING - Accuracy
Example 6.20—Solution
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SIMPLE SAMPLING - Accuracy
Example 6.20—Solution
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SIMPLE SAMPLING - Accuracy
Example 6.20—Practical test

800200 600

n

400 1 000


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8
6

2
4
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SIMPLE SAMPLING 
- Convergence criteria
How do we know when to stop the sampling?
• Number of samples fixed in advance
• Estimate the precision, for example using the 

coefficient of variation
20



SIMPLE SAMPLING 
- Convergence criteria
Example 6.21—Problem
• Probabilistic production simulation  

LOLPPPC = 1.0%.
• Desired precision: 95% probability that the 

estimate is within 0.05% of the true value.
This means that if the true LOLP is 1.08% then we 
want the estimate to be in the interval 1.03% to 
1.13%.

• The estimate mLOLO is assumed to be 
normally distributed.
21



SIMPLE SAMPLING 
- Convergence criteria
Example 6.21—Solution
• The probability is 95% that an N()-

distributed random variable belongs to the 
interval 1.96.

• Here, we want the interval to be 0.0005 
The standard deviation of mLOLO must be 
less than 0.0005/1.96  0.000255 
The variance of mLOLO must be less than 
0.0002552  6.5·10–8.
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SIMPLE SAMPLING 
- Convergence criteria
Example 6.21—Solution (cont.)
• The variance of mLOLO depends on 

Var[LOLO], which is unknown but can be 
estimated using the results from the PPC 
simulation:

Var[LOLO]  LOLPPPC(1 – LOLPPPC) = 
= 0.01·0.99 = 0.0099.
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SIMPLE SAMPLING 
- Convergence criteria
Example 6.21—Solution (cont.)
• From theorem 6.22 we now have

• Var[mLOLO] < 6.5·10–8 n > 152 127.

Var mLOLO  Var LOLO 
n

-------------------------------.=
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SIMPLE SAMPLING 
- Convergence criteria
Coefficient of variation

Definition: The coefficient of variation is
defined as

aX = 
Var mX 

mX
--------------------------.
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SIMPLE SAMPLING 
- Convergence criteria
Estimation of accuracy
• Select a few samples.
• Estimate Var[X] by

• Test if aX is less than some tolerance limit, . 
If yes, stop sampling, otherwise generate a 
few more samples, etc.

sX
2 1

n
--- xi mX– 2.

i 1=

n

=
26



SIMPLE SAMPLING 
- Convergence criteria
Example of using the coefficient of variation

800200 600

n

400 1 000


8

Hn

8
6

2
4

25

2

a

15

05

1
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SIMULATION OF ELECTRICITY 
MARKETS 

• The scenario parameters, Y, have known 
probability distributions.

• The result variables, X, have unknown proba-
bility distributions.

• We are primarily interested in system indices, 
which are defined as expectation values of 
some result variables.

g Y Y X
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SIMULATION OF ELECTRICITY 
MARKETS 

Result variable System index
TOC ETOC

LOLO LOLP

ENS EENS
29



SIMPLE SAMPLING OF 
ELECTRICITY MARKETS 

- Generate random numbers from uniform distri-
bution

- Transform random numbers into appropriate 
probability distributions of the scenario parameters

- Determine how electricity market behaves in the 
scenario

- Sample the result variables

Inverse
transform
method

U Y mXX Sampling
Random
number

generator

Electricity
market
model
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RANDOM NUMBER 
GENERATION 
• Pseudorandom number generators are 

mathematical function which given a seed 
generates a sequence of numbers.

• A good pseudorandom number generator 
produces a sequence which closely mimics the 
properties of a U(0, 1)-distribution.

Without knowledge of the pseudorandom number 
generator and the seed it is hardly possible to 
predict the next number in the sequence.

• Pseudorandom number generators are 
available in most programming languages.
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TRANSFORMATION OF RANDOM 
NUMBER 
It is not likely that the scenario parameters are 
U(0, 1)-distributed; hence, the output of the 
random number generator must be transformed 
to the appropriate probability distribution.
This can be done using the inverse transform 
method:

Theorem E.1. If a random variable U is
U(0, 1)-distributed then the random var-
iable Y =  has the distribution
function FY(x).

FY
1– U 
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TRANSFORMATION OF RANDOM 
NUMBER 
Practical notice: We can use  instead of FY.

Example

F̃Y

200 400



F̃D

x

MW600 800

U

D
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TRANSFORMATION OF RANDOM 
NUMBER 
The inverse of the distribution function of the 
normal distribution, (x), does not exist!
 Use an approximation of –1(x) instead.

This method is called the approximate inverse 
transform method and is described in 
theorem E.2 in the compendium.
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ELECTRICITY MARKET MODEL 
• A Monte Carlo simulation is not restricted to a 

specific electricity market model.
• The complexity of the electricity market 

model is only limited by the computation 
time.
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ELECTRICITY MARKET MODEL 
• In mathematical terms, the electricity market 

model is a function 

xi = g(yi),

where
xi = result variables for scenario i,
yi = scenario parameters of scenario i,

• In most cases the function g cannot be formu-
lated explicitly, but must be indirectly defined 
from the solution to an optimisation problem.
36



ELECTRICITY MARKET MODEL 
- PPC model
Assume
• Perfect competition
• Perfect information
• Load is not price sensitive
• Neglect grid losses and 

limitations
• All scenario parameters 

can be treated as 
independent
37



ELECTRICITY MARKET MODEL 
- Multi-area model
Assume
• Perfect competition
• Perfect information
• Load is not price sensitive
• Transmission grid losses 

and limitations included
• Distribution grid losses 

and limitations neglected
38



MULTI-AREA MODEL - Example
System data
• Thermal units:

- Oil condensing, 300 MW, 280 ¤/MWh, 95% availa-
bility, located in North

- Nuclear, 1 000 MW, 100 ¤/MWh, 90% availability, 
located in South

- Bio mass condensing, 400 MW, 180 ¤/MWh, 95% 
availability, located in South
39



MULTI-AREA MODEL - Example
System data (cont.)
• Non-dispatchable units:

- Run-of-the-river hydro, 2 000 MW (80%), 1 900 MW 
(10%), 1 800 MW (10%), negligible operation cost, 
located in North

- Wind farm, 100 MW (10%), 80 MW (5%), 60 MW 
(10%), 40 MW (15%), 20 MW (25%), 0 MW (35%), 
negligible operation cost, available capacity 0 MW 
(35%), located in Isle
40



MULTI-AREA MODEL - Example
System data (cont.)
• Transmission lines:

- AC line between North and South, 1 200 MW, 4% 
losses, 100% availability

- HVDC link from South to Isle (one direction only!), 
200 MW, 2% losses, 100% availability

• Load: 
- North: N(600,100)
- South: N(2000,300)
- Isle: N(100,20)

(No correlations, no price sensitivity, no 
compensation paid for disconnected load.)
41



MULTI-AREA MODEL - Example
Problem
Formulate a multi-area model for the system 
and show how the result variables TOC, LOLO 
and ENS are calculated.

Solution
Parameters

Dn = load in area n (scenario parameter—will 
be randomised during simulation),
42



MULTI-AREA MODEL - Example
Solution (cont.)

= available generation capacity in 
thermal unit g (scenario parameter—will 
be randomised during simulation),

= maximal transmission
from area n to area m = 

=

Gg

Pn m

1 200

1 200

200



 n 1 m 2,= =

n 2 m 1,= =

n 2 m 3,= =
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MULTI-AREA MODEL - Example
Solution (cont.)

= available non-dispatchable gener-
ation capacity in area n (scenario 
parameter—will be randomised during 
simulation),

Gg = operation cost in thermal unit g = 

=

Wn

280

100

180



 g 1,=

g 2,=

g 3,=
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MULTI-AREA MODEL - Example
Solution (cont.)

Ln, m = loss coefficient for transmission
from area n to area m = 

=

Un = penalty for unserved load in area n = 
= 500, n = 1, 2, 3.

0.04

0.04

0.02



 n 1 m 2,= =

n 2 m 1,= =

n 2 m 3,= =
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MULTI-AREA MODEL - Example
Solution (cont.)
Optimisation variables

Gg = generation in thermal unit g, 
g = 1, 2, 3,

Pn, m = transmission from area n to area m, 
(n, m) = (1, 2), (2, 1), (2, 3),

Un = unserved load in area n, n = 1, 2, 3,
Wn = generation in non-dispatchable unit 

n, n = 1, 3.
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MULTI-AREA MODEL - Example
Solution (cont.)
Objective function

minimise 

Constraints
Load balance in North:

G1 + W1 + 0.96P2, 1 = D1 – U1 + P1, 2.

GgGg UnUn.
n 1=

3

+

g 1=

3


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MULTI-AREA MODEL - Example
Solution (cont.)

Load balance in South:

G2 + G3 + 0.96P1, 2 = D2 – U2 + P2, 1 + P2, 3.

Load balance in Isle:

W3 + 0.98P2, 3 = D3 – U3.
48



MULTI-AREA MODEL - Example
Solution (cont.)
Variable limits

0  Gg  g = 1, 2, 3,

0  Pn,m  (n, m) = (1, 2), (2, 1), (2, 3),

0  Un  Dn, n = 1, 2, 3,

0  Wn  n = 1, 3.

Gg,

Pn m ,

Wn,
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MULTI-AREA MODEL - Example
Solution (cont.)
The result variables are calculated by solving the 
optimisation problem for the specific values of 
the scenario parameters and then calculate

TOC = 

ENS = 

GgGg,
g 1=

3



Un,
n 1=

3


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MULTI-AREA MODEL - Example
Solution (cont.)

LOLO = 
0

1

 if ENS = 0,

if ENS > 0.
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HOME ASSIGNMENTS PART IV 
- Hints
Problem 22
Define multi-area model.

- State probability distribution of scenario param-
eters.

- State value of model constants.
- Formulate optimisation problem.
- Show how the result variables TOC and LOLO are 

calculated from the solution to the optimisation 
problem.
52



MONTE CARLO SIMULATION 
- Example system
• Run-of-the-river hydro, 150 kW, 100% availa-

bility, negligible operation cost
• Diesel generator set, 40–100 kW, 100% avail-

ability, 1 ¤/kWh
• Diesel generator set, 0–50 kW, 100% availa-

bility, 2 ¤/kWh
• Load N(180, 40)-distributed [kW]
• Dummy load (water heater) can absorb 

surplus generation
53



SIMPLE SAMPLING - Example
Example 6.22 (simple sampling)
In our example system, we need to consider
• One scenario parameter, D (the load), i.e., 

Y = [D]. 
• One result variable, TOC (operation cost), 

i.e., X = [TOC].
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SIMPLE SAMPLING - Example
Example 6.22 (cont.)
• The electricity market model is the explicit 

function X = g(Y), where

g Y 

0

2 Y 150– 
40

Y 150–

100 2 Y 250– +

200









=

Y 150,
150 Y 170,
170 Y 190,
190 Y 250,
250 Y 300,

300 Y.
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SIMPLE SAMPLING - Example
Example 6.22 (cont.)
To randomise a scenario, we generate a U(0, 1)-
distributed random number and transform it to 
an N(180, 40)-distribution.

Scenario, i 1 2 3 4 5 6 7 8 9 10

D [kWh/h] 165 273 144 147 185 147 225 120 147 152

TOC [¤/h] 30 146 0 0 40 0 75 0 0 4

mTOC
1
10
------ toci

i 1=

10

  29.50.= = =
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SIMPLE SAMPLING - Example
Example 6.22 (cont.)

20050 100

D

150 300





TOC¤/h





kWh/h250
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SIMPLE SAMPLING - Example
Example 6.22 (cont.)
• True value: ETOC = 39.66 ¤/h.
• Estimate from simple sampling: 

mTOC = 29.50 ¤/h.
58



HOME ASSIGNMENTS PART IV 
- Hints
Problem 23
Apply simple sampling.

- Analyse scenarios using the multi-area model from 
problem 22.

- Estimate ETOC and LOLP.
59



MONTE CARLO SIMULATION 
- Efficiency
• A huge number of samples might be 

necessary to obtain a reasonable accuracy  
long computation time.

• However, we might have some information 
about the simulation results already before 
we start sampling.

• Sometimes the information can be used to 
improve the accuracy (i.e., reduce Var[mX]).
60



MONTE CARLO SIMULATION 
- Efficiency
• Methods to reduce Var[mX] are referred to as 

variance reduction techniques.
In this course we will consider three variance 
reduction techniques:
- Complementary random numbers
- Control variates
- Stratified sampling
61



COMPLEMENTARY RANDOM 
NUMBERS - Theory
• Assume that mX1 and mX2 are two separate 

estimates of X, i.e., E[mX1] = E[mX2] = X.
• The mean of these two estimates, i.e., 

(mX1 + mX2)/2, is also an estimate of X, 
because

 = 

=

E
mX1 mX2+

2
-------------------------- 1

2
--- E mX1  E mX2 + =

1
2
--- X X+  X.=
62



.
COMPLEMENTARY RANDOM 
NUMBERS - Theory
• How good is the new estimate? Study

 =  = Var
mX1 mX2+

2
-------------------------- 1

4
---Var mX1 mX2+ 

1
4
--- Var mX1  Var mX2  2Cov mX1 mX2+ +=
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COMPLEMENTARY RANDOM 
NUMBERS - Theory
• If mX1 and mX2 are obtained from two 

separate simulations using simple sampling 
with n samples in each simulation, then 
Var[mX1] = Var[mX2] and Cov[mX1, mX2] = 0 
 

 = … = 

Cf. theorem 6.22: Twice as many samples should 
cut the variance of the estimate in half.

Var
mX1 mX2+

2
--------------------------

Var mX1 
2

-------------------------.
64



COMPLEMENTARY RANDOM 
NUMBERS - Theory
• However, if mX1 and mX2 are negatively corre-

lated, the variance of the estimate can be 
lower than for simple sampling. If we have n 
samples in each simulation, then Var[mX1] = 
Var[mX2] and Cov[mX1, mX2] < 0  

 = … =

= 

Var
mX1 mX2+

2
--------------------------

Var mX1 
2

------------------------- 1
2
---Cov mX1 mX2 .+
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COMPLEMENTARY RANDOM 
NUMBERS - Theory
How do we get negatively correlated estimates?
• Let U (the original random number) be 

U(0, 1)-distributed.
• Then U* = 1 – U (the complementary random 

number) is also U(0, 1)-distributed.
• U and U* are negatively correlated 

(U, U* = – 1).
• Y =  and Y* =  will also be 

negatively correlated (Y, Y*U, U*).
FY

1– U  FY
1– U* 
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COMPLEMENTARY RANDOM 
NUMBERS - Theory

200 400



F̃D

x

MW600 800

U

D D*

U*
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COMPLEMENTARY RANDOM 
NUMBERS - Theory
• X = g(Y) and X* = g(Y*) will also be negatively 

correlated (X, X*Y, Y*U, U*).
• If mX1 is based on observations of X and mX2 

is based on observations of X* then mX1 and 
mX2 will also be negatively correlated.
68



COMPLEMENTARY RANDOM 
NUMBERS - Implementation
Practical observation:

  



Hence, there is no need to differentiate between 
samples based on original and complementary 
random numbers respectively.

mX1
1
n
--- xi,

i 1=

n

= mX2
1
n
--- x*i

i 1=

n

=

mX1 mX2+

2
-------------------------- 1

2n
------ xi x*i+ .

i 1=

n

=
69



COMPLEMENTARY RANDOM 
NUMBERS - Implementation

- Generate random numbers from uniform distri-
bution (original and complementary)

- Transform all random numbers into appropriate 
probability distributions of the scenario parameters

- Determine how electricity market behaves in 
original and complementary scenarios

- Sample the result variables

Inverse
transform
method

mXSampling
Random
number

generator

Electricity
market
model

U Y X

U* Y* X*
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COMPLEMENTARY RANDOM 
NUMBERS - Implementation
If there are S scenario parameters then we can 
create in total 2S scenarios on various combina-
tions of original and complementary random 
numbers.

Example
Two scenario parameters,  and D:
• Original scenario:  D
• Complementary scenarios:

 D*,  D,  D*

G

G,

G, G*, G*,
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COMPLEMENTARY RANDOM 
NUMBERS - Implementation
• Generating too many complementary 

scenarios might be inefficient.
• Hence, we should only generate comple-

mentary random numbers for those scenario 
parameters where the negative correlation 
between Y and Y* will be detectable in the 
result variables!
72



COMPLEMENTARY RANDOM 
NUMBERS - Implementation
Example: Complementary random numbers for 
multi-area model
• The total load, Dtot = Dn, has a stronger 

correlation to TOC than the individual area 
loads, Dn.

• Randomise the total load Dtot and its comple-
mentary random number 

• Randomise two sets of preliminary loads in 
the areas,  and  respectively.

D*tot.

Dn
i

Dn
ii
73



COMPLEMENTARY RANDOM 
NUMBERS - Implementation
Example (cont.)
• Finally, scale the preliminary area loads so 

that they match the total load, i.e.,

Scenario 1: 

Scenario 2: 

Dn

Dtot

Dm
i

m N
---------------------------Dn

i
=

Dn

D*tot

Dm
ii

m N
---------------------------Dn

ii
=

74



COMPLEMENTARY RANDOM 
NUMBERS - Example
Example 6.26 Scenario, i 1 2 3 4 5

D [kWh/h] 165 273 144 147 185

TOC [¤/h] 30 146 0 0 40

Scenario, i 6 7 8 9 10

D* [kWh/h] 195 87 216 213 175

TOC* [¤/h] 45 0 66 63 40

mTOC
1
10
------ toci

i 1=

10

  43.00.= = =
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COMPLEMENTARY RANDOM 
NUMBERS - Example
Example 6.26 (cont.)

20050 100

D

150 300





TOC¤/h





kWh/h250
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COMPLEMENTARY RANDOM 
NUMBERS - Example
Example 6.26 (cont.)
• True value: ETOC = 39.66 ¤/h.
• Estimate from simple sampling: 

mTOC = 29.50 ¤/h.
• Estimate using complementary random 

numbers: mTOC = 43.00 ¤/h.
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CONTROL VARIATES - Theory
• Assume that we have two electricity market 

models: a detailed model X = g(Y) and a 
simplified model Z =

The results of the simplified model are referred to 
as control variates.

• Assume that we want to calculate the system 
indices for the detailed model (i.e., estimate 
E[g(Y)]) and that we already know the system 
indices for the simplified model,  = Z.

• Sample the difference between the result 
variables and the control variate, i.e., X – Z!

g̃ Y .

E g̃ Y  
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CONTROL VARIATES - Theory
• An estimate of the system indices for the 

detailed model is obtained by adding the 
system indices of the simplified model to the 
estimated difference between the two models, 
because

E[m(X – Z) + Z] = E[X – Z] + Z = 
= E[X] – E[Z] + Z = E[X].
79



CONTROL VARIATES - Theory
• How good is the new estimate?

Var[m(X – Z) + Z] =  + 0 = 

= 

• X and Z are results from models of the same 
system  X and Z should be positively corre-
lated  Var[m(X – Z) + Z] < Var[mX], i.e., 
sampling using a control variate can be more 
efficient than using simple sampling!

1
n
---Var X Z– 

1
n
--- Var X  Var Z  2Cov X Z –+ .
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CONTROL VARIATES - Theory

U Y m(X – Z)Sampling

Z

X
+

–

+
+

Z

mX

Inverse
transform
method

Random
number

generator

Simplified
electricity
market
model

Detailed
electricity
market
model
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CONTROL VARIATES 
- Simplified model
Assume
• Perfect competition
• Perfect information
• Load is not price sensitive
• Neglect grid losses and 

limitations
• All scenario parameters 

can be treated as 
independent
82



CONTROL VARIATES 
- Simplified model
Parameters

Dtot = total load (scenario parameter—will be 
randomised during simulation),

= available generation capacity in 
thermal unit g (scenario parameter—will 
be randomised during simulation),

Gg = operation cost in thermal unit g,

Un = penalty for unserved load.

Gg
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CONTROL VARIATES 
- Simplified model
Optimisation variables

= generation in thermal unit g,

= unserved load.

Objective function

G̃g

Ũ

GgG̃g UŨ.+
g G

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CONTROL VARIATES 
- Simplified model
Load balance constraint

Variable limits

0   

0   Dtot.

G̃g
g G
 Dtot Ũ.–=

G̃g Gg,

Ũ
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CONTROL VARIATES 
- Simplified model
The control variates are calculated by solving 
the optimisation problem for the specific values 
of the scenario parameters and then calculate

= 

= 

= 

TOC˜ GgG̃g,
g G


ENS˜ Ũ,

LOLO˜ 0F̃

1F̃

 if ENS˜  = 0,

if ENS˜  > 0.
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CONTROL VARIATES 
- Simplified model
The expectation values of the control variates 
are calculated by running a probabilistic 
production cost simulation, i.e.,

 = ETOCPPC,

 = EENSPPC,

 = LOLPPPC.


TOC˜


ENS˜


LOLO˜
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CONTROL VARIATES - Example
Example 6.27
In the simplified model we ignore the lower 
generation limit on the larger diesel generator 
set, i.e.,

g̃ Y 

0

Y 150–

100 2 Y 250– +

200







=

Y 150,
150 Y 250,
250 Y 300,

300 Y.
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CONTROL VARIATES - Example
Example 6.27 (cont.)

ETOCPPC = 36.27.

 = … =

= 2.20 + 36.27 = 38.47.

Scenario, i 1 2 3 4 5 6 7 8 9 10

D [kWh/h] 165 273 144 147 185 147 225 120 147 152

TOC [¤/h] 30 146 0 0 40 0 75 0 0 4

 [¤/h] 15 146 0 0 35 0 75 0 0 2TOC˜

mTOC
1
10
------ toci toc˜

i–  
TOC˜+

i 1=

10

=
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CONTROL VARIATES - Example
Example 6.27 (cont.)

20050 100

D

150 300





TOC TOC˜¤/h





kWh/h250
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CONTROL VARIATES - Example
Example 6.27 (cont.)
• True value: ETOC = 39.66 ¤/h.
• Estimate from simple sampling: 

mTOC = 29.50 ¤/h.
• Estimate using complementary random 

numbers: mTOC = 43.00 ¤/h.
• Estimate using a control variate: 

mTOC = 38.47 ¤/h.
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STRATIFIED SAMPLING 
- Theory
• Assume that a population is divided in 

separate parts, strata, so that each unit 
belongs to exactly one stratum.

If Xh is the set of units belonging to stratum h 
then we must have
- Xh  Xk = , h  k (no overlapping strata)
-  (the strata should include the entire 

population)
Xh

h
 X=
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STRATIFIED SAMPLING 
- Theory
• Each stratum is assigned a stratum weight 

corresponding to the size of the stratum, i.e.,

Nh is the number of units in stratum h and N is the 
number of units in the population.

h

Nh

N
------ P X Xh .= =
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STRATIFIED SAMPLING 
- Theory
• Assume that we have determined estimates 

of E[Xh] for each stratum.
- Estimate using simple sampling:

- Analytical value: mXh = Xh.

mXh
1
nh
----- xh i .

i 1=

nh

=
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STRATIFIED SAMPLING 
- Theory
• The weighted mean of the estimated stratum 

expectation values, mXh, is an estimate of 
E[X], because

 = 

=  =  = E[X].

E hmXh

h 1=

L

 hXh

h 1=

L

=

Nh

N
------ 1

Nh
------ xi

i 1=

Nh


h 1=

L


1
N
---- xi

i 1=

N


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STRATIFIED SAMPLING 
- Theory
• How good is the new estimate? It can be 

shown that

 = 

• Well chosen strata can result in a lesser 
variance than for simple sampling!
However, the opposite is also possible!

Var hmXh

h 1=

L

 h
2Var mXh .

h 1=

L


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STRATIFIED SAMPLING - Theory

U Sampling

+

mX

YL

Y1 X1

XL

mXL

mX1
1

U Sampling

L

h
++Xh

Inverse
transform
method

Random
number

generator

Electricity
market
model

Inverse
transform
method

Random
number

generator

Electricity
market
model
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STRATIFIED SAMPLING 
- Implementation
• Strata cannot be defined based on the values 

of the result variables, as these values are 
unknown until we calculate x = g(y).

• A stratum must therefore be defined in terms 
of possible values for the scenario param-
eters.

• Hence, we must be able to generate random 
numbers which belong to a specific part of a 
probability distribution.
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STRATIFIED SAMPLING 
- Implementation
Example:
Generate D.

200 400



F̃D

x

MW600 800
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STRATIFIED SAMPLING 
- Example
Example 6.28
Introduce the following strata:

1. All scenarios such that D  150
2. All scenarios such that 150 < D  250
3. All scenarios such that 250 < D
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STRATIFIED SAMPLING 
- Example
Example 6.28 (cont.)
Calculate the stratum weights:

1 = P(D  150) = (–0.75)  0.23,
2 = P(150 < D  250) = 

= (1.75) – (–0.75)  0.73,
3 = P(250 < D) = 1 – (1.75)  0.04.
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STRATIFIED SAMPLING 
- Example
Example 6.28 (cont.)

= … = 32.72.

Stratum, h 1 2 3

Scenario, i 1 2 1 2 3 4 5 6 1 2

D [kWh/h] 124 150 166 168 193 167 224 156 254 255

TOC [¤/h] 0 0 33 36 43 34 74 12 108 110

mTOC 1
1
2
--- x1 i
i 1=

2

 2
1
6
--- x2 i
i 1=

6

 3
1
2
--- x3 i

i 1=

2

+ +=
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STRATIFIED SAMPLING 
- Example
Example 6.28 (cont.)

20050 100

D

150 300





TOC¤/h





kWh/h250
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STRATIFIED SAMPLING 
- Example
Example 6.28 (cont.)
• True value: ETOC = 39.66 ¤/h.
• Simple sampling: mTOC = 29.50 ¤/h.
• Complementary random numbers: 

mTOC = 43.00 ¤/h.
• Control variate: mTOC = 38.47 ¤/h.
• Stratified sampling: mTOC = 32.72 ¤/h.
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COMBINED VARIANCE 
REDUCTION TECHNIQUES 
Example 6.29 Stratum, h 1 2 3

Scenario, i 1 1 2 3 1

D [kWh/h] 124 166 168 193 254

 [¤/h] 0 16 18 43 108

TOC [¤/h] 0 32 36 43 108

Scenario, i 2 4 5 6 2

D* [kWh/h] 138 217 215 185 276

 [¤/h] 0 67 65 35 152

TOC* [¤/h] 0 67 65 40 152

TOC˜

TOC*˜
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COMBINED VARIANCE 
REDUCTION TECHNIQUES 
Example 6.29 (cont.)

 +

+  +

+  + = … = 43.44.

mTOC 
TOC˜ +

1

1
2
--- toc1 i toc˜

1 i– 
i 1=

2

=

2
1
6
--- toc2 i toc˜

2 i– 
i 1=

6



3
1
2
--- toc3 i toc˜

3 i– 
i 1=

2


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COMBINED VARIANCE 
REDUCTION TECHNIQUES 
Example 6.29 (cont.)

20050 100

D

150 300





TOC¤/h





kWh/h250
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COMBINED VARIANCE 
REDUCTION TECHNIQUES 
Example 6.29 (cont.)
• True value: ETOC = 39.66 ¤/h.
• Simple sampling: mTOC = 29.50 ¤/h.
• Complementary random numbers: 

mTOC = 43.00 ¤/h.
• Control variate: mTOC = 38.47 ¤/h.
• Stratified sampling: mTOC = 32.72 ¤/h.
• Combined method: mTOC = 43.44 ¤/h.
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COMPARISON OF SIMULATION 
METHODS 
Results from 1 000 simulations with different seeds for the 
random number generator. 

Simulation method
Lowest 
ETOC 

estimate

Average 
ETOC 

estimate

Highest 
ETOC 

estimate

Simple sampling 6.33 39.78 81.65

Complementary 
random numbers 31.48 39.85 64.22

Control variate 36.27 40.03 46.08

Stratified sampling 19.44 39.78 59.74

Combination 36.95 40.03 43.30
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STRATIFIED SAMPLING - Strata 
tree
How should strata be defined in order to achieve 
the largest variance reduction?
Consider that

Var[mX] = 

 If all Var[mXh] are small then Var[mX] will be 
small.

h
2Var mXh .

h 1=

L


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STRATIFIED SAMPLING - Strata 
tree
• It is preferable if all scenarios belonging to a 

stratum give the same or very similar values 
for the result variables.

• To define efficient strata, we must be able to 
predict the results of the scenarios (without 
actually calculating the result variables).

• The strata tree is a tool to systematically 
categorise the scenarios.
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STRATIFIED SAMPLING - Strata 
tree
A strata tree is a tree structure with the 
following properties:
• The root of the tree contains no information.
• All other nodes specify a number of possible 

outcomes for one or more scenario param-
eters.

• Each node has a node weight, which is given 
by the probability to get the specified 
outcome for the scenario parameters.
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STRATIFIED SAMPLING - Strata 
tree
• The node weight of the root is 1.
• The scenario parameters along a branch of 

the tree should be independent of each other.
• Each branch will include a part of the total 

population, i.e., each branch corresponds to a 
stratum. The stratum weight is obtained by 
multiplying the node weights along the 
branch.

Strata with similar properties can be merged, i.e., 
one stratum may consist of several branches.
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STRATIFIED SAMPLING - Strata 
tree
The strata tree should include all possible 
scenarios. This requirement is guaranteed to be 
fulfilled if
• all children of a certain node specify outcomes 

for the same scenario parameters,
• the sum of the node weights of the children is 

equal to 1.
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STRATIFIED SAMPLING - Strata 
tree
The possible values of TOC and LOLO can be 
predicted if we know the total available gener-
ation capacity,  (thermal) and  (non-
dispatchable), as well as the total load, D.
• One node for each possible state of the 

available generation capacity should be in an 
upper level of the strata tree.

Requires discrete probability distributions!
• One node for each interesting load interval in 

a lower level of the strata tree.

G W
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STRATIFIED SAMPLING - Strata 
tree
• In a multi-area model, we need to consider 

that there are some load intervals for which it 
is more difficult to predict TOC and LOLO.

• Assume that we know the maximal losses,  
and the maximal unused generation capacity 
due to transmission congestion,  
(renewable) and  (total).

L,

UW
UWG
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STRATIFIED SAMPLING - Strata 
tree
• D   –   TOC = 0, LOLO = 0

The load can be covered using only non-
dispatchable units.

•  –  < D   –   TOC  0, LOLO = 0
It is possible that the load can be covered using 
only non-dispatchable units, but other units 
might have to be dispatched due to transmission 
congestion.

W UW

W UW W L
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STRATIFIED SAMPLING - Strata 
tree
•  –  < D    TOC  0, LOLO = 0

It is possible that the load can be covered using 
only non-dispatchable units, but other units 
might have to be dispatched due to transmission 
losses.

•  < D   +  –   TOC  0, LOLO = 0
The load cannot be covered using only non-
dispatchable units, but the generation capacity is 
sufficient thanks to the other units.

W L W

W W G UWG
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STRATIFIED SAMPLING - Strata 
tree
•  +  –  < D   +  –   TOC  0, 

LOLO = 0 or 1
It is possible that the generation capacity is suffi-
cient, but load shedding might become necessary 
due to transmission congestion.

•  +  –  < D   +   TOC  0, 
LOLO = 0 or 1

It is possible that the generation capacity is suffi-
cient, but load shedding might become necessary 
due to transmission losses.

W G UWG W G L

W G L W G
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STRATIFIED SAMPLING - Strata 
tree
•  +  < D  TOC  0, LOLO = 1

Load shedding is unavoidable.

Notice that other combinations of TOC and 
LOLO are also possible, for example if  = 0.

W G

G
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STRATIFIED SAMPLING - Strata 
tree
Example 6.30 — System data
Generation
• Wind power, available capacity 0 kW (50%) or 

150 kW (50%), negligible operation cost.
• Diesel generator set, 250 kW, 80% availa-

bility, operation cost 10 ¤/kWh.
Load
• Evenings: Mji N(175,48), Kijiji N(75,20).
• Other time: Mji N(120,24), Kijiji N(30,7).
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STRATIFIED SAMPLING - Strata 
tree
Example 6.30 — System data
Transmission
• The maximal losses on the line between Mji 

and Kijiji are 3 kW.

Example 6.30 — Problem
Suggest an appropriate strata tree and calculate 
the stratum weights!
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STRATIFIED SAMPLING - Strata 
tree
Example 6.30 — Solution
Suitable strata tree
• Level 0: Root
• Level 1: Time of day
• Level 2: Available generation capacity
• Level 3: Load
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D
N

STRATIFIED SAMPLING - Strata 
tree

Time level Generation 
level Load level

S
tr

at
um

w
ei

gh
t

T
O

C

L
O

L
O

Ty
pe

eriod

N
od

e
w

ei
gh

t

N
od

e
w

ei
gh

t

D

N
od

e
w

ei
gh

t

ay/
ight 0.75

0 0 0.1 0 1 0.075 0 1 *

150 0 0.1

147 0.452 0.034 0 0 I

147–150 0.048 0.004 0 0/1 *

> 150 0.5 0.038 0 1 *

W G
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STRATIFIED SAMPLING - Strata 
tree

Time level Generation 
level Load level

S
tr

at
um

w
ei

gh
t

T
O

C

L
O

L
O

Ty
pe

eriod

N
od

e
w

ei
gh

t

N
od

e
w

ei
gh

t

D

N
od

e
w

ei
gh

t

ay/
ight 0.75 0 250 0.4

247 0.452 0.034 > 0 0 IV

247–250 0.048 0.004 > 0 0/1 VI

> 250  0  0 > 0 1 VII

W G
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STRATIFIED SAMPLING - Strata 
tree

Time level Generation 
level Load level

S
tr

at
um

w
ei

gh
t

T
O

C

L
O

L
O

Ty
pe

eriod

N
od

e
w

ei
gh

t

N
od

e
w

ei
gh

t

D

N
od

e
w

ei
gh

t

ay/
ight

0.75

150 250 0.4

147 0.452 0.136 0 0 I

147–150 0.048 0.014 0 0 III

150–397 0.5 0.15 > 0 0 IV

397–400  0  0 > 0 0/1 VI

> 400  0  0 > 0 1 VII

W G
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STRATIFIED SAMPLING - Strata 
tree

Time level Generation 
level Load level

S
tr

at
um

w
ei

gh
t

T
O

C

L
O

L
O

Ty
pe

eriod

N
od

e
w

ei
gh

t

N
od

e
w

ei
gh

t

D

N
od

e
w

ei
gh

t

ven-
g 0.25

0 0 0.1 0 1 0.025 0 1 *

150 0 0.1

147 0.024 0.001 0 0 I

147–150 0.003  0 0 0/1 *

> 150 0.973 0.243 0 1 *

W G
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STRATIFIED SAMPLING - Strata 
tree

Time level Generation 
level Load level

S
tr

at
um

w
ei

gh
t

T
O

C

L
O

L
O

Ty
pe

eriod

N
od

e
w

ei
gh

t

N
od

e
w

ei
gh

t

D

N
od

e
w

ei
gh

t

ven-
g 0.25 0 250 0.4

247 0.452 0.034 > 0 0 IV

247–250 0.048 0.004 > 0 0/1 VI

> 250 0.5 0.05 > 0 1 VII

W G
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STRATIFIED SAMPLING - Strata 
tree

Time level Generation 
level Load level

S
tr

at
um

w
ei

gh
t

T
O

C

L
O

L
O

Ty
pe

eriod

N
od

e
w

ei
gh

t

N
od

e
w

ei
gh

t

D

N
od

e
w

ei
gh

t

ven-
g

0.25

150 250 0.4

147 0.024 0.002 0 0 I

147–150 0.003  0 0 0 III

150–397 0.970 0.097 > 0 0 IV

397–400  0  0 > 0 0/1 VI

> 400 0.002  0 > 0 1 VII

W G
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HOME ASSIGNMENTS PART IV 
- Hints
Problem 24
Define strata using a strata tree.

- Calculate the maximal losses.
- Identify interesting load intervals.
- Calculate node and stratum weights.

Recommended exercise: 6.16a
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HOME ASSIGNMENTS PART IV 
- Hints
Problem 25
Perform a small Monte Carlo simulation to 
estimate ETOC and LOLP.

- Randomise a scenario (norminterval will 
generate both an original and complementary 
random number from the normal distribution of 
your choice).

- Analyse the scenario using the multi-area model 
(problem 22) and a PPC model.

- Calculate estimates according to (6.46).

Recommended exercises: 6.14, 6.15, 6.16b
131



HOME ASSIGNMENTS PART IV 
- Hints
Problem 26
Compare probabilistic production cost 
simulation and Monte Carlo simulation.
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STRATIFIED SAMPLING 
- Sample allocation

Theorem (Neyman allocation): Var[mX]
for n samples is minimised if the sample
are distributed between the strata ac-
cording to

where Xh = 

nh

hXh

kXkk 1=
L


--------------------------------n,=

Var Xh .
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STRATIFIED SAMPLING 
- Sample allocation
The Neyman allocation corresponds to a flat 
optimum, i.e., it is possible that we get a 
Var[mX] which is close to the optimal value, 
even if we do not use the best sample allocation.
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STRATIFIED SAMPLING 
- Sample allocation
Problem 1: 
Var[Xh] are unknown.
• Estimate Xh by

• Notice that Xh cannot be estimated unless 
nh > 0!

sXh
1
nh
----- xh i mXh– 2

i 1=

nh

 .=
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STRATIFIED SAMPLING 
- Sample allocation
Procedure
• Run a pilot study where the number of 

scenarios per stratum is determined in 
advance.

• Calculate an appropriate allocation.
• Run a batch of scenarios.
• Test convergence criteria.
• If more scenarios are needed, update the 

sample allocation, run the next batch, etc.
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STRATIFIED SAMPLING 
- Sample allocation
Problem 2: 
We are simultaneously sampling several result 
variables and a sample allocation that is optimal 
for one result variable might not be optimal for 
another.
• Calculate the optimal sample allocation with 

respect to each result variable.
• Use a compromise allocation (for example the 

mean of the allocations).
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STRATIFIED SAMPLING 
- Sample allocation
Example:

Stratum
Optimal allocation for Compromise 

allocationTOC LOLO

1 0 0 0

2 1 028 0 514

3 388 0 194

4 4 1 420 712

5 0 0 0

 1 420 1 420 1 420
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STRATIFIED SAMPLING 
- Sample allocation
Problem 3: 
It might not be possible to achieve the target 
sample allocation.
• Try to get as close as possible!

(Cf. algorithm described in the compendium, 
page 144.)
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STRATIFIED SAMPLING 
- Sample allocation
Example:

Stratum
Allocation

Compromise So far Next batch Total

1 0 94 0 94

2 514 530 0 530

3 194 68 77 145

4 712 512 123 635

5 0 16 0 16

 1 420 1 220 200 1 420
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