

DD2476 Search Engines and

Information Retrieval Systems

Hedvig Kjellström hedvig@kth.se www.csc.kth.se/DD2476

Assignment 1

• Thus far, Boolean queries:

BRUTUS AND CAESAR AND NOT CALPURNIA

- Good for:
 - Expert users with precise understanding of their needs and the collection
 - Computer applications
- Not good for:
 - The majority of users

DD2476 Lecture 4, February 21, 2014

ROYAL INSTITUTE OF TECHNOLOGY

Problem with Boolean Search: Feast or Famine

- Experienced maybe in Task 1.5?
- Boolean queries often result in either too few (=0) or too many (1000s) results.
 - Query 1: "standard user dlink 650": 200,000 hits
 - Query 2: "standard user dlink 650 no card found": 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked Retrieval

In cus sounds Bratus - vinkpecia witypedia.org/witk/Marcus_Junius_Brutus utus, vars mor Servila var älskarinna til Caesar, behandlades mer eller mindre so son av Caesar. Dock valde Brutus att fly Rom tilsammans med ...

us Caesar - Wikipedia ikipedia.org/wiki/ulius_Caesar * imidades Caesar vid Pompejus teater i Rom. Han fick motta 23 dokstick av de mansvuma, bland vilka hans Kritogan Marcus Brutus befann sig. n ham til mulakar - hitumvistat kritogan i Gallion - hitumvistatis fall och ...

arcus Junius Brutus the Younger - Wikipedia, the free encyclopedia wikipedia.org/.../Marcus_Junius_Brutus_the_Y... • Översätt den här sidan spps till Assessination of Julius Cases (44 BC). Brutus was persunded into joiring o compirerus galarist Cases at by the other senators. Eventually ...

lius Caesar (play) - Wikipedia, the free encyclopedia wikipedia.org/wiki/Julius_Caesar_(play) * Översätt den här sidan rous Brutus is Caesar? close friend and a Roman praetor. Brutus allows hims cabled inb ingine a norm of conscriptor sectores because of a

on Trip and Starlito – Caesar & Brutus Lyrics | Rap Genius pgenius.com/Don-trip-and-starlito-caesar-and-br... * Oversätt den här sid leb 2014 - Starlito: You Caesar or Brutus? Mich or Rico? (Verse 1: Starlito) Yes wirdfit fom vering but cart much bit findin from Ko. My hanie ...

Vad blev det av Brutus? | Världens Historia varldenshistoria.se/fraga-oss/vad-blev-det-av-brutus • Marcus Junius Brutus (85–42 före Kristus) var år 44 före Kristus en av dem som h ned Roms diktart Casear vi det isenatsammarhitise i Pompejus teater.

Was Caesar the Father of Brutus? - Ancient / Classical History anienthistory about com.../caesarpeople... ~ Oversätt den här sidar av N.S. Cai - 1260 cinter i Google Answer: Caesar went out of his way for Marcus Junius Brutus (sita Cuntu Sarvilla: Caesis Brutus), payning Brutus after he had stod against Caesar

SparkNotes: Julius Caesar: Character List www.sparknotes.com > ... > Julius Caesar - Oversätt den här sidan Brutus - A supporter of the republic who believes strongly in a government guided the vriter of enorous. While Runks Leves Caesare za e friend he enorous ...

Starito x Don Trip - Caesar and Brutus (NoD)) - Download and ... https://www.audiomatk.com/../caesar-and-brutus-... * Oversätt den här sida 1 okt 2013 - Listen to and Download Caesar and Brutus (NoD)), the new song from Starlib x Don Trip.

Feast or Famine: Not a Problem in Ranked Retrieval

- Large result sets no issue
- Show top K (\approx 10) results
- Option to see more results
- Premise: the ranking algorithm works well enough

Today

- Tf-idf and the vector space model (Manning Chapter 6)
 - Term frequency, collection statistics
 - Vector space scoring and ranking
- Efficient scoring and ranking (Manning Chapter 7)
 - Speeding up vector space scoring and ranking

DD2476 Lecture 4, February 21, 2014

DD2476 Lecture 4, February 21, 2014

Ch. 6

ROYAL INSTITUTE

Tf-idf and the Vector Space Model (Manning Chapter 6)

Scoring as the Basis of Ranked Retrieval

- Wish to return in order the documents most likely to be useful to the searcher
- Rank-order documents with respect to a query
- Assign a score say in [0, 1] to each document
 Measures how well document and guery "match"

• One-term query:

BRUTUS

- Term not in document: score 0
- More appearances of term in document: higher score

Recall (Lecture 1): Binary Term-Document Incidence Matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTONY	1	1	0	0	0	0
BRUTUS	1	1	0	1	0	0
CAESAR	1	1	0	1	1	1
CALPURNIA	0	1	0	0	0	0
CLEOPATRA	1	0	0	0	0	0
MERCY	1	0	1	1	1	1
WORSER	1	0	1	1	1	0

• Document represented by binary vector $\in \{0,1\}^{|V|}$

DD2476 Lecture 4, February 21, 2014

Term-Document Count Matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTONY	157	73	0	0	0	0
BRUTUS	4	157	0	1	0	0
CAESAR	232	227	0	2	1	1
CALPURNIA	0	10	0	0	0	0
CLEOPATRA	57	0	0	0	0	0
MERCY	2	0	3	5	5	1
WORSER	2	0	1	1	1	0

• Document represented by count vector $\in \mathbb{N}^{v}$

Bag of Words Model

DD2476 Lecture 4, February 21, 2014

- Ordering of words in document not considered:
 "John is quicker than Mary" ≅ "Mary is quicker than John"
- This is called the bag of words model
- In a sense, step back: The positional index was able to distinguish these two documents
- Assignment 2 Ranked Retrieval: Back to Bag-of-Words

Term frequency tf_{t,d} of term t in document d = number of times that t occurs in d

Log-Frequency Weighting

- Raw term frequency is a bit overestimated:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term
 - But arguably not 10 times more relevant
- Alternative is log-frequency weight of term t in document d

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

DD2476 Lecture 4, February 21, 2014 DD2476 Lecture 4, February 21, 2014 Simple Query-Document Score **Document Frequency** • Queries with >1 terms • Rare terms are more informative than frequent terms

- Example: rare word ARACHNOCENTRIC
 - Document containing this term is very likely to be relevant to query ARACHNOCENTRIC
 - \rightarrow High weight for rare terms like ARACHNOCENTRIC
- Example: common word THE
 - Document containing this term can be about anything
 - \rightarrow Very low weight for common terms like THE
- We will use document frequency (df) to capture this.

- Score for a document-query pair: sum over terms t in both *q* and *d*:

score = $\sum tf_{t,d}$ $t \in q \cap d$

- The score is 0 if none of the query terms is present in the document
- What is the problem with this measure?

- df_t is the document frequency of term *t*: the number of documents that contain *t*
- df_t is an inverse measure of the informativeness of t
- $df_t \le N$
- Informativeness idf (inverse document frequency) of *t*:
 - $\operatorname{idf}_{t} = \log_{10} \left(N/\mathrm{df}_{t} \right)$
 - log (N/df_t) instead of N/df_t to "dampen" the effect of idf.
 - Mathematical reasons later in the course

Exercise 2 Minutes

• Suppose *N* = 1,000,000

 $idf_t = \log_{10} \left(\frac{N}{df_t} \right)$

term	df _t	idf _t
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

• Fill in the idf_t column

DD2476 Lecture 4, February 21, 2014

Effect of idf on Ranking

DD2476 Lecture 4, February 21, 2014

- Does idf have an effect on ranking for one-term gueries, like IPHONE?
- Only effect for >1 term
 - Query CAPRICIOUS PERSON: idf puts more weight on CAPRICIOUS than PERSON.

KTH VOTENSKAT

Collection vs. Document Frequency

• Collection frequency of *t*: total number of occurrences of *t* in the collection, counting multiple occurrences

Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

• Which word is a better search term (and should get a higher weight)?

• tf-idf weight of a term: product of tf weight and idf weight

 $w_{t,d} = \mathrm{tf}_{t,d} \times \log_{10}(N/\mathrm{df}_t)$

- Best known weighting scheme in information retrieval
- Note: the "-" in tf-idf is a hyphen, not a minus sign!
- Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

$\mathsf{Binary} \to \mathsf{Count} \to \mathsf{Weight} \ \mathsf{Matrix}$

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
ANTONY	5.255	3.18	0	0	0	0.35
BRUTUS	1.21	6.1	0	1	0	0
CAESAR	8.59	2.54	0	1.51	0.25	1
CALPURNIA	0	1.54	0	0	0	0
CLEOPATRA	2.85	0	0	0	0	0
MERCY	1.51	0	1.9	0.12	5.25	0.88
WORSER	1.37	0	0.11	4.15	0.25	1.95

 \bullet Document represented by tf-idf weight vector $\in R^v$

DD2476	Lecture	4	February	21	2014
002470	Lecture	ч,	i coi dai y	21,	2014

DD2476 Lecture 4, February 21, 2014

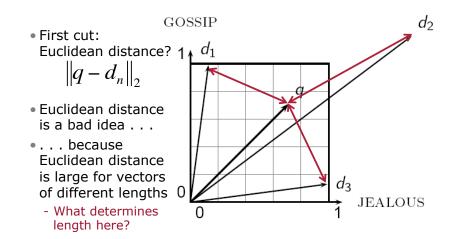
Documents as Vectors

- So we have a |V|-dimensional vector space
 - Terms are axes/dimensions
 - Documents are points in this space
- Very high-dimensional
 - Order of 107 dimensions when for a web search engine
- Very sparse vectors most entries zero

Queries as Vectors

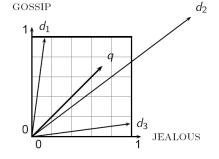
- Key idea 1: Represent queries as vectors in same space
- Key idea 2: Rank documents according to proximity to query in this space
 - proximity = similarity of vectors
 - proximity \approx inverse of distance
- Recall:
 - Get away from Boolean model
 - Rank more relevant documents higher than less relevant documents

Formalizing Vector Space Proximity



Exercise 5 Minutes

- Euclidean distance bad for
- vectors of different length (documents with different #words)
- high-dimensional vectors (large dictionaries)



- Discuss in pairs:
- Can you come up with a better difference measure?

DD2476 Lecture 4, February 21, 2014

Use Angle Instead of Distance

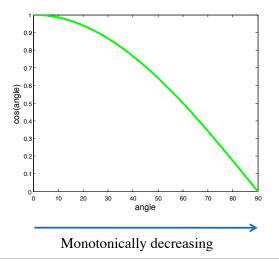
- Thought experiment: take a document d and append it to itself. Call this document d'
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity
- Key idea:
- Length unimportant
- Rank documents according to angle from query

Problems with Angle

DD2476 Lecture 4, February 21, 2014

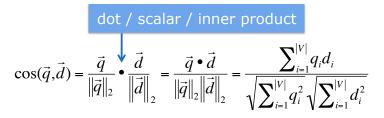
- Angles expensive to compute arctan
- Find a computationally cheaper, equivalent measure
 - Give same ranking order ≅ monotonically increasing/ decreasing with angle
- Any ideas?

Cosine More Efficient Than Angle



DD2476 Lecture 4, February 21, 2014

Cosine Similarity



- *q_i* is the tf-idf weight of term *i* in the query *d_i* is the tf-idf weight of term *i* in the document
- $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} = the cosine of the angle between \vec{q} and \vec{d} .

Length Normalization

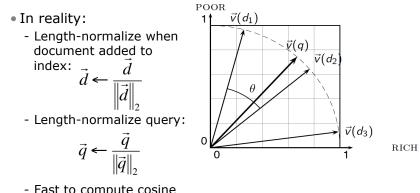
• Computing cosine similarity involves lengthnormalizing document and query vectors

• L₂ norm:
$$\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Recall:
 - Length unimportant
 - Rank documents according to angle from query

DD2476 Lecture 4, February 21, 2014

Cosine Similarity



- Fast to compute cosine similarity:

$$\cos(\vec{q},\vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

Cosine Similarity Example

- How similar are the novels
 - SaS: Sense and Sensibility
 - PaP: Pride and Prejudice
 - WH: Wuthering Heights?
- \bullet Term frequency tf_t

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

DD2476 Lecture 4, February 21, 2014

Cosine Similarity Example

• Log frec	quency weights	$W_{t,d} = \begin{cases} 1 + \log_1 0 \\ 0 \end{cases}$	$\int_{0}^{0} \mathrm{tf}_{t,d}, \text{if } \mathrm{tf}_{t,a}, \text{other}$	$t_t > 0$ wise
term	SaS	PaP	WH	
affection	3.06	2.76	2.30	
jealous	2.00	1.85	2.04	
gossip	1.30	0	1.78	
wuthering	0	0	2.58	

DD2476 Lecture 4, February 21, 2014

Cosine Similarity Example

	 After length normalization 	$\vec{d} = \begin{bmatrix} w_{1,d}, \dots, w_{4,d} \end{bmatrix}, \ \vec{d} \in$	_
--	--	--	---

• After length normalization $d = [w_{1,d}, \dots, w_{4,d}]$, $a \leftarrow$						
term	SaS	PaP	WH			
affection	0.789	0.832	0.524			
jealous	0.515	0.555	0.465			
gossip	0.335	0	0.405			
wuthering	0	0	0.588			

 $cos(SaS,PaP) \approx 0.789*0.832 + 0.515*0.555 + 0.335*0 + 0*0 \approx 0.94$ $cos(SaS,WH) \approx 0.79$ $cos(PaP,WH) \approx 0.69$

• Why is cos(SaS,PaP) > cos(*,WH)?

 \vec{d}

Computing Cosine Scores

COSINESCORE(q)

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 **for each** query term *t*
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
 - for each pair $(d, tf_{t,d})$ in postings list
- 6 **do** Scores[d]+ = $w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d

5

- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 return Top K components of Scores[]

- Represent the query as a tf-idf vector
- Represent each document as a tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Efficient Scoring and Ranking

(Manning Chapter 7)

DD2476 Lecture 4, February 21, 2014

Efficient Cosine Ranking

- Find the *K* docs in the collection "nearest" to the query \Rightarrow *K* largest query-document cosine scores
- Up to now: Linear scan through collection
- Did not make use of sparsity in term space
- Computed all cosine scores
- Efficient cosine ranking:
 - Computing each cosine score efficiently
 - Choosing the K largest scores efficiently

Computing Cosine Scores Efficiently

Approximation:
Assume that terms only occur once in query

 $w_{t,q} \leftarrow \begin{cases} 1, & \text{if } w_{t,q} > 0 \\ 0, & \text{otherwise} \end{cases}$

- Works for short querys (|q| << *N*)
- Works since ranking only relative

Computing Cosine Scores Efficiently

FASTCOSINESCORE(q)

- float Scores[N] = 01
- 2 for each d
- **do** Initialize *Length*[*d*] to the length of doc *d* 3
- for each query term t 4

- 5 do fetch postings list for *t* 6 for each pair(d, tf_{t,d}) in postings list **do** add $wf_{t,d}$ to *Scores*[*d*]
- Read the array *Length*[*d*] 8
- 9 for each d

7

- **do** Divide *Scores*[*d*] by *Length*[*d*] 10
- 11 **return** Top *K* components of *Scores*[]

DD2476 Lecture 4, February 21, 2014

Choosing K Largest Scores Efficiently

- Retrieve top K documents wrt query
- Not totally order all documents in collection
- Do selection:
- avoid visiting all documents
- Already do selection:
- Sparse term-document incidence matrix, |d| << N
- Many cosine scores = 0
- Only visits documents with nonzero cosine scores (≥1 term in common with query)

Computing Cosine Scores Efficiently

- Downside of approximation: sometimes get it wrong
 - A document not in the top K may creep into the list of K output documents

• How bad is this?

- Cosine similarity is only a proxy (Task 1.5)
 - User has a task and a guery formulation
 - Cosine matches documents to guery
 - Thus cosine is anyway a proxy for user happiness
 - If we get a list of K documents "close" to the top K by cosine measure, should be ok

DD2476 Lecture 4, February 21, 2014

Choosing K Largest Scores Efficiently Generic Approach

- Find a set A of contenders, with K < |A| << N
 - A does not necessarily contain the top K, but has many docs from among the top K
 - Return the top K documents in A
- Think of A as pruning non-contenders
- Same approach used for any scoring function!
- Will look at several schemes following this approach

Choosing K Largest Scores Efficiently Index Elimination

- Basic algorithm FastCosineScore only considers documents containing at least one query term
- All documents have ≥1 term in common with query
- Take this further:
 - Only consider high-idf query terms
 - Only consider documents containing many query terms

Choosing K Largest Scores Efficiently Index Elimination

Example:

CATCHER IN THE RYE

- Only accumulate scores from CATCHER and RYE
- Intuition:
 - IN and THE contribute little to the scores do not alter rank-ordering much
 - Compare to stop words

DD2476 Lecture 4, February 21, 2014

- Benefit:
 - Posting lists of low-idf terms have many documents \rightarrow eliminated from set A of contenders

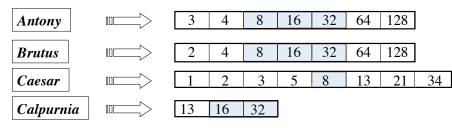
DD2476 Lecture 4, February 21, 2014

Choosing K Largest Scores Efficiently Index Elimination

• Example:

CAESAR ANTONY CALPURNIA BRUTUS

 Only compute scores for documents containing ≥3 query terms



Choosing K Largest Scores Efficiently Champion Lists

- Precompute for each dictionary term *t*, the *r* documents of highest tf-idf_{td} weight
 - Call this the champion list (fancy list, top docs) for t
- Benefit:
 - At query time, only compute scores for documents in the champion lists fast
- Issue:
 - r chosen at index build time
 - Too large: slow
 - Too small: r < K

Exercise 5 Minutes

- Index Elimination: consider only high-idf query terms and only documents with many query terms
- Champion Lists: for each term t, consider only the r documents with highest tf-idf_{td} values
- Think quietly and write down:
- How do Champion Lists relate to Index Elimination? Can they be used together?
- How can Champion Lists be implemented in an inverted index?

DD2476 Lecture 4, February 21, 2014

Choosing K Largest Scores Efficiently Static Quality Scores

- Assign query-independent quality score g(d) in [0,1] to each document d
- net-score $(q,d) = g(d) + \cos(q,d)$
 - Two "signals" of user happiness
 - Other combination than equal weighting
- Seek top K documents by net score

Choosing K Largest Scores Efficiently Static Quality Scores

- Develop idea of champion lists
- We want top-ranking documents to be both relevant and authoritative
 - Relevance cosine scores
 - Authority query-independent property
- Examples of authority signals
 - Wikipedia pages (qualitative)
 - Articles in certain newspapers (qualitative)
 - A scientific paper with many citations (quantitative)
- PageRank (quantitative)

Lecture 5

DD2476 Lecture 4, February 21, 2014

More in

Choosing K Largest Scores Efficiently Champion Lists + Static Quality Scores

- Can combine champion lists with g(d)-ordering
- Maintain for each term t a champion list of the r documents with highest g(d) + tf-idf_{td}
- Seek top *K* results from only the documents in these champion lists

Next

- Assignment 1 left?
- Email Johan or Hedvig (away next week)
- Lecture 5 (March 4, 13.15-15.00)
- B1
- Readings: Manning Chapter 21 Avrachenkov Sections 1-2
- Lecture 6 (March 7, 10.15-12.00)
- B1
- Readings: Manning Chapter 9, MAYBE MORE

DD2476 Lecture 4, February 21, 2014