DD2459: Software Reliability

Lab 4: Testing frameworks:
JUnit

Version 1.0
2014-02-24

Introduction:

Test automation frameworks are integrated systems setting up rules for auto-
matic testing of a product. The building blocks of these frameworks simplify the
automation effort that would otherwise be manual.

Testing frameworks are responsible for:
1. Establishing the format in which to express the rules
2. Creating the necessary mechanisms to hook into the application to be
tested
3. Execute the tests
4. Report the results of the tests

The tests, also known as test suite, can be used in many different forms, both
with and without the assistance of a development environment.

The following exercise will help you try a popular open source unit-testing
framework for the Java programming language, JUnit, which belongs to the fami-
ly of unit testing frameworks started by SUnit.

For the purpose of this exercise, we will also be using the popular and open
source IDE, Eclipse, which is available on all computers running Ubuntu at CSC
labs. The version installed at CSC labs integrates JUnit 3 and 4, but for this exer-
cise we assume that JUnit 4 is to be used.

There is not much configuration to do, but for the sake of clarity, you are encour-
aged to read the concise tutorial created by Lars Vogel; in particular, the sections
3 and 4 (as of version 2.4).

The zip file (that you can find on the course webpage) has the following files:

* AllTests.java
An executable helper class in case you would prefer using the command
line

* Sorter.java
A class implementing a version of the shell sort algorithm (callable with
Sorter.sort(int[]))

* SorterTestCases.java
The main class where you will implement the test cases for the previous
sort algorithm implementation.



Since the method Sorter.sort () is static you will not have to instantiate the
Sorter class, and you can use it whenever and wherever you feel like to (note
that the implementation of the sorting algorithm will modify the array that you
want to have sorted with).

Exercises:

After you have read the documentation about JUnit and get to play around
Eclipse’s interface for JUnit, you should create a new project (name it as you like)
and configure it with JUnit 4.

Once the project has been created, copy/move the three files of the zip file you
downloaded on the course’s webpage into the src folder of the newly created
project.

The provided skeleton includes a full implementation of one test in the method
testSortNElementsInRandomOrderList in the file named Sort-
erTestCases. java (and tests whether a list of integers is properly sorted by
the implementation of the shell sort algorithm or not).

Do have a look at how the implementation of the test is done.

1. Run all the tests by clicking on Run As on the top menu of Eclipse, and then
select the option JUnit Test.
a. Why the test method testSortNElementsInRandomOrderList
doesn’t fail nor succeed and instead times out?
b. Fix the problem that causes this time out (Hint: look at how the loop coun-
ters in the shell sort method behave) and re-run the tests.
Now the test testSortNElementsInRandomOrderList should finish
but it fails, why? Explain what happens with the test method and fix the
problem that causes the test to fail.
2. Look at the remaining test methods in the class SorterTestCases, imple-
ment them and test them with the Sorter.sort () method.
Note that you do not always have to use the method Assert.assertTrue()
in your test cases. Try different options instead of defaulting to this method (and
you will learn more! :)
3. Can you think of more tests? (Maybe you would like to check your notes and
solution of the previous lab for ideas...).
a. Design two more tests you could do, don’t forget to implement and test
them.
b. Would you remove any of the tests you implemented in the previous task?
Why?
c. JUnit allows parameterized tests. How would they help you?
4. The implementation of the Sorter.sort() method includes a couple of
comments about invariants. Can you test these with JUnit? How?
5. Now that you have a pretty good idea of how automated testing works with
JUnit Can you certify that the implementation of the shell sort algorithm is free of
errors? What did/do all these tests give you as a developer?



Bibliography:

1. http://junit.sourceforge.net more info on JUnit

2. http://www.vogella.com/articles/JUnit/article.html more info on JUnit
setup and usage within Eclipse

3. http://en.wikipedia.org/wiki/Shellsort more info on shell sort algorithm




