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DD2476: Lecture 5

e Recap: Ranked retrieval
e We want top-ranking documents to be both relevant
and authoritative
— Relevance — cosine scores cos(q,d)
— Authority — query-independent property g(d)
— net_score(q,d) = cos(q,d) + g(d)

* PageRank is a way of estimating the authority of a
page

The Web as a directed graph

hyperlink




Using link structure for ranking

e Assumption: A link from X to Y signals that X’s
author perceives Y to be an authoritative page.

— X “casts a vote” on Y.
e Simple suggestion: Rank = number of in-links

e However, there are problems with this naive
approach.

PageRank: basic ideas

e WWW’s particular structure can be exploited
— pages have links to one another
— the more in-links, the higher rank

— in-links from pages having high rank are worth more than
links from pages having low rank

— thisidea is the cornerstone of PageRank (Brin & Page
1998)

— A”random surfer” that randomly follows links will spend
more time on pages with high PageRank
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PageRank - first attempt

PR (p) = Z PRL—(q)

gein (p) g

— p and g are pages
— in(p) is the set of pages linking to p
— L, is the number of out-links from q

The random surfer model

Imagine a random surfer that follow links
The link to follow is selected with uniform probability

If the surfer reaches a sink (a page without links), he
randomly restarts on a new page

Every once in a while, the surfer jumps to a random
page (even if there are links to follow)
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PageRank - second attempt

e With probability 1-c the surfer is bored, stops
following links, and restarts on a random page

e Guess: Google uses ¢=0.85

PRy ¥ PR@] -0

gein (p) q

e Without this assumption, the surfer will get stuck in
a subset of the web.

PageRank example

PR4=0.85~(P§2 +PR3J+O'515

PR,

PR3:0.85~( 3 PR, | PR,

+ PR, + + +
2 4 5

PR, =PR, =0.85- PR, + PR, + 015
3 4 5

PR, :0.85~(PR4)+0'15
4 5
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PageRank- interpretations

Authority / popularity / relative information value

PR, = the probability that the random surfer will be
at page p at any given point in time

This is called the stationary probability

How do we compute it?

Random surfer as a Markov chain

e The random surfer model suggests a a Markov chain
formulation

— A Markov chain consists of n states, plus an nxn transition
probability matrix P.

— At each step, we are in exactly one of the states.

— For 1 <i,j<n, the matrix entry P; tells us the probability of
j being the next state, given we are currently in state /.

0 P 0




Ergodic Markov chains

e A Markov chain is ergodic if
— you have a path from any state to any other
— For any start state, after a finite transient time T, the
probability of being in any state at a fixed time T>T, is
nonzero.
e Qur transition matrix is non-zero everywhere <>
the graph is strongly connected <>
the Markov chain is ergodic <>
unique stationary probabilities exist

Transition matrices

0 033 0.33 0.33 0
0 0 0 1 0
0 0 0 05 05
0 0 0 0
025 025 025 0.25 0
— - G = cP+(1-c)J
02 02 02 02 02 0.0300 0.3105 0.3105 0.3105 0.0300
02 02 02 02 02 0.0300 0.0300 0.0300 0.8800 0.0300
02 02 02 02 02 0.0300 0.0300 0.0300 0.4550 0.4550
02 02 02 02 02 0.0300 0.0300 0.0300 0.0300 0.8800
02 02 02 02 02 0.2425 0.2425 0.2425 0.2425 0.0300
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Probability vectors

A probability (row) vector x = (xy, ... x,) tells us
where the walk is at any point.

E.g., (000...1...000) means we’re in state /.

1 i n

More generally, the vector x = (x,, ... X,) means the

walk is in state i with probability x;. v\
e XG gives the next time step. Zn: =
e X is stationary if x=xG il :

Stationary probabilites

e Leta=(a,, ... a,) denote the row vector of stationary
probabilities.

— If our current position is described by a, then the next step
is distributed as aG.

— Butais the steady state, so a=aG.

e Solving the matrix equation x=xG gives us a.

— So ais the (left) eigenvector for G.

III

— (Corresponds to the “principal” eigenvector of G with the

largest eigenvalue.)

— Transition probability matrices always have largest
eigenvalue 1.
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Example

Ya
Va Ya
Va

For this example, the stationary
probabilities are a,= 2 and a,= ¥a.

— [1/4.%+3/4.1/4 1/4-%+%-3A] — [1/4 3/4]

Power iteration

e Recall, regardless of where we start, we eventually
reach the stationary vector a.

e Start with any distribution (say x=(10...0)).
— After one step, we're at xG;
— after two steps at (xG)G , then ((xG)G)G and so on.

e “Eventually”, for “large” k, xGk= a.

3/4/2014



Power iteration algorithm

Let x=(0,..,0) and x’ an initial
state, say (1,0,..,0)

while ( |x-x'| > & ):
X = x'/
x'= xG

This algorithm converges very slowly.

Example

e Stationary probabilities:
(0.102,0.131,0.131, 0.298, 0.339)

found after 17 iterations starting from
(0.2,0.2,0.2,0.2,0.2)
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Approximating PageRank

e Power iteration is slow — every iteration requires N?
multiplications
— with our Wikipedia corpus, that’s 102 multiplications

e However:
— many of these multiplications are unnecessary
— random jumps can be computed faster

— if there are few sinks (like in Wikipedia), jumps from sinks
can be approximated faster

Approximation method

for every i:
for every link i-j:
x' [J] += x[i]*c/out[i]
x’' [i] += (1-c)/N

x’' [i] += s/N/N
x' ‘k
0

where s is the number of sinks
Iterate until convergence or a
fixed number of times (e.g. 1000)
Caveat: this works well for
Wikipedia but probably

not for the web

X
x’/
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Today

* Monte Carlo methods
- Bishop, Pattern Recognition and Machine Learning, ch 11

e Five Monte Carlo approximations to PageRank
- Avrachenkov et al, SIAM 2007, sec 1-2
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Approximate Solutions

e Huge #docs -> exact inference very expensive
- Matrix factorization takes us part of the way
- But eventually...

e Better solution: find approximation

¢ One way: Monte Carlo sampling
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The Monte Carlo principle

e State space z

e Imagine that we can sample z(l) from the pdfp(z)
but that we do not know its functional form

e Might want to estimate for example:

Elz] =) zp(2)

op(Z) can be approximated by a histogram over Z(l):

1 L
Q(Z) — E ;5z(l):z
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Example: Dice Roll

100 6

1

e The Law of Large Numbers

2 —6

Example: Dice Roll

1
» The probability of outcomes of dice rolls: p(z) = G

1

e Exact solution: os

0.6r

p2)

0.4r

0.5 ° ° ° °

0

1 2 B p 5 s
e Monte Carlo approximation:
- Roll a dice a number of times, might get

D=4 =1 M= 5=¢
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What is p and g for PageRank?

e Discuss with your neighbor (5 mins)
- Graph of connected documents
- Look at each document z, compute PageRank

e Quest: Find p(Z) = prob that the document z is
visited = PageRank score of document z

e Monte Carlo approach: .find approximate PageRank cj(z)
by sampling from D Z)
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How do we sample from p
without knowing p?

« Discuss with your neighbor (5 mins) . Five Monte Ca rlO

—

e Simulate a "random surfer” walking in the graph APPFOXi mations to

- Equal probability c¢/<#links> of selecting any of the Uancat®
<#links> links in a document D ROYAL INSTITUTE Pag eRa n k

- Probability (1 - c) of not following links, but jumping to or TecumoLoay
an unlinked document in the graph

()

* Record location 2"/ at each step /

1 L
Q(z) - E lz_;éz(l):z
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Monte Carlo Idea Advantages
©)
gaanﬁgv:s 5 eD = document id e Exact method: precision improves linearly for all docs
e  Consider a random walk {D.}»o that starts from a e Monte Carlo method: precision improves faster for
randomly chosen page. high-rank docs
e At each step t:
- Prob c: D, = one of the documents with edges from D,_, e Exact method: computationally expensive
- Prob (1 — ¢): The random walk terminates, and D; = » Monte Carlo method: parallel implementation possible
random node
. o e Exact method: must be redone when new pages are
« in first » Endpoint Dy is distributed as PageRank n when T=»o added
ggg\r/:nd q o%ample from n = do many random walks (with limited « Monte Carlo method: continuous update
same as n

here
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1. MC end-point with random start

e Simulate N runs of the random walk {D.}, initiated
at a randomly chosen page

e PageRank of page j = 1,...,n:
n; = (#walks which end at j)/N
* N = O(n2), remember Law of Large Numbers

e Example:
1 link 4 link 6 jump 2 link 5 ju
4 1ink 6 link 5 jump 1 link 4 link(6)
n=1[0,0,0.5 0,0, 0.5]
2 walks not enough

2. MC end-point with cyclic start

e Simulate N = mn runs of the random walk {D}s
initiated at each page exactly m times

e PageRank of pagej = 1,...,n:
n; = (#walks which end at j)/N
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3. MC complete path

e Simulate N = mn runs of the random walk {D.}s¢
initiated at each page exactly m times

e PageRank of page j = 1,...,n:
n; = (#visits to node j during walks)/N

e Example:
ini‘inum%in@u
in in um in in

n=[1/6, 1/12, 1/12, 1/4, 1/6, 1/4]
2 walks not enough
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4. MC complete path stopping at
dangling nodes

e Simulate N = mn runs of the random walk {D}
initiated at each page exactly m times and
stopping when it reaches a dangling node

e PageRank of pagej = 1,...,n:

n; = (#visits to node j during walks)/
(total #visits during walks)

e Example:

ink(4yin jum in
Sndng " O"C
N = [1/8, 1/8, 0, 1/4, 1/4, 1/4] (3)

2 walks not enough
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5. MC complete path with random
start

e Simulate N runs of the random walk {D.}, initiated
at a randomly chosen page and stopping when it
reaches a dangling node

e PageRank of page j = 1,...,n:

n; = (#visits to node j during walks)/
(total #visits during walks)

Next

e Assignment 1 left? Email Johan or Hedvig

e Lecture 6 (March 7, 13.15-15.00)
- B1
- Readings: Manning Chapter 9

e Lecture 7 (March 18, 13.15-15.00)
- B1
- Readings: Manning Chapter 11, 12

e Computer hall session (March 18, 15.00-19.00)
- Gul (Osquars Backe 2, level 4)
- Examination of computer assignment 2
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