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DD2476: Lecture 5

• Recap: Ranked retrieval

• We want top-ranking documents to be both relevant

and authoritative

– Relevance – cosine scores   cos(q,d)

– Authority – query-independent property g(d)

– net_score(q,d) = cos(q,d) + g(d)

• PageRank is a way of estimating the authority of a 

page

The Web as a directed graph

hyperlink
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Using link structure for ranking

• Assumption: A link from X to Y signals that X’s 

author perceives Y to be an authoritative page. 

– X “casts a vote” on Y.

• Simple suggestion: Rank = number of in-links

• However, there are problems with this naive 

approach.

PageRank: basic ideas

• WWW’s particular structure can be exploited

– pages have links to one another

– the more in-links, the higher rank

– in-links from pages having high rank are worth more than

links from pages having low rank

– this idea is the cornerstone of PageRank (Brin & Page 

1998)

– A ”random surfer” that randomly follows links will spend

more time on pages with high PageRank
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PageRank – first attempt

– p and q are pages

– in(p) is the set of pages linking to p

– Lq is the number of out-links from q
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The random surfer model

• Imagine a random surfer that follow links

• The link to follow is selected with uniform probability

• If the surfer reaches a sink (a page without links), he

randomly restarts on a new page

• Every once in a while, the surfer jumps to a random

page (even if there are links to follow)
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PageRank – second attempt

• With probability 1-c the surfer is bored, stops 

following links, and restarts on a random page

• Guess: Google uses c=0.85

• Without this assumption, the surfer will get stuck in 

a subset of the web.
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PageRank- interpretations

• Authority / popularity / relative information value

• PRp = the probability that the random surfer will be 

at page p at any given point in time

• This is called the stationary probability

• How do we compute it?

Random surfer as a Markov chain

• The random surfer model suggests a a Markov chain

formulation

– A Markov chain consists of n states, plus an n×n transition 

probability matrix P.

– At each step, we are in exactly one of the states.

– For 1 ≤ i,j ≤ n, the matrix entry Pij tells us the probability of 

j being the next state, given we are currently in state i. 

i j
Pij



3/4/2014

6

Ergodic Markov chains

• A Markov chain is ergodic if

– you have a path from any state to any other

– For any start state, after a finite transient time T0, the 

probability of being in any state at a fixed time T>T0 is 

nonzero.

• Our transition matrix is non-zero everywhere ↔

the graph is strongly connected ↔

the Markov chain is ergodic ↔

unique stationary probabilities exist

Transition matrices

0

1

2

3

4

0 0.33 0.33 0.33 0

0 0 0 1 0

0 0 0 0.5 0.5

0 0 0 0 1

0.25 0.25 0.25 0.25 0

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

P

J

0.0300 0.3105 0.3105 0.3105 0.0300

0.0300 0.0300 0.0300 0.8800 0.0300

0.0300 0.0300 0.0300 0.4550 0.4550

0.0300 0.0300 0.0300 0.0300 0.8800

0.2425 0.2425 0.2425 0.2425 0.0300

G = cP+(1-c)J
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• A probability (row) vector x = (x1, … xn) tells us 

where the walk is at any point.

• E.g., (000…1…000) means we’re in state i.

• More generally, the vector x = (x1, … xn) means the 

walk is in state i with probability xi. 

• xG gives the next time step.

• x is stationary if x=xG

Probability vectors

i n1

.1
1

=∑
=

n

i

ix

Stationary probabilites

• Let a = (a1, … an) denote the row vector of stationary 

probabilities.

– If our current position is described by a, then the next step 

is distributed as aG.

– But a is the steady state, so a=aG.

• Solving the matrix equation x=xG gives us a.

– So a is the (left) eigenvector for G.

– (Corresponds to the “principal” eigenvector of G with the 

largest eigenvalue.)

– Transition probability matrices always have largest 

eigenvalue 1.
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Example

1 2

¾

¼
¾¼

For this example, the stationary

probabilities are a1= ¼ and a2= ¾.

¼ ¾
¼ ¾

¼ ¾
¼·¼ + ¾·¼ ¼·¾ + ¾·¾  = = ¼ ¾

Power iteration

• Recall, regardless of where we start, we eventually 

reach the stationary vector a.

• Start with any distribution (say x=(10…0)).

– After one step, we’re at xG;

– after two steps at (xG)G , then ((xG)G)G and so on.

• “Eventually”, for “large” k, xGk = a.
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Power iteration algorithm

Let x=(0,…,0) and x’ an initial 

state, say (1,0,…,0)

while ( |x-x’| > ε ):

x = x’

x’= xG

This algorithm converges very slowly.

Example

• Stationary probabilities:

( 0.102, 0.131, 0.131, 0.298, 0.339 )

found after 17 iterations starting from 

(0.2, 0.2, 0.2, 0.2, 0.2)

0

1

2

3

4
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Approximating PageRank

• Power iteration is slow – every iteration requires N2

multiplications

– with our Wikipedia corpus, that’s 1012 multiplications

• However:

– many of these multiplications are unnecessary

– random jumps can be computed faster 

– if there are few sinks (like in Wikipedia), jumps from sinks 

can be approximated faster

for every i:

for every link i→j:

x’[j] += x[i]*c/out[i]

x’[i] += (1-c)/N

x’[i] += s/N/N

x = x’

x’= 0

where s is the number of sinks

Iterate until convergence or a 

fixed number of times (e.g. 1000)

Caveat: this works well for 

Wikipedia but probably

not for the web

Approximation method
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Today 

• Monte Carlo methods 
-  Bishop, Pattern Recognition and Machine Learning, ch 11 

• Five Monte Carlo approximations to PageRank 
-  Avrachenkov et al, SIAM 2007, sec 1-2 
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Monte Carlo Methods 

Approximate Solutions 

• Huge #docs -> exact inference very expensive 
- Matrix factorization takes us part of the way 
-  But eventually… 

• Better solution: find approximation 

• One way: Monte Carlo sampling 
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The Monte Carlo principle 

• State space z 

• Imagine that we can sample        from the pdf          
but that we do not know its functional form 

• Might want to estimate for example: 

                                       

•          can be approximated by a histogram over       : 
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z(l) p(z)

E[z] =
X

z p(z)

p(z) z(l)

q̂(z) =
1

L

LX

l=1

�z(l)=z

Example: Dice Roll 

• The probability of outcomes of dice rolls: 
 
• Exact solution: 
 

• Monte Carlo approximation: 
-  Roll a dice a number of times, might get   
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p(z) =
1
6

What would 
happen if the 
dice was bad? 

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

z

p(
z)

z(1) = 6 z(2) = 4 z(3) = 1 z(4) = 6 z(5) = 6

Example: Dice Roll 

• The Law of Large Numbers 
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What is p and q for PageRank? 

• Discuss with your neighbor (5 mins) 
- Graph of connected documents 
-  Look at each document z, compute PageRank 

• Quest: Find           = prob that the document z is 
visited = PageRank score of document z 

• Monte Carlo approach: find approximate PageRank     
by sampling from   
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How do we sample from p         
without knowing p? 

• Discuss with your neighbor (5 mins) 

• Simulate a ”random surfer” walking in the graph 
-  Equal probability c/<#links> of selecting any of the 

<#links> links in a document D 
-  Probability (1 - c) of not following links, but jumping to 

an unlinked document in the graph  

• Record location       at each step l 
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Five Monte Carlo 
Approximations to 
PageRank 

Monte Carlo Idea 

• D = document id 
• Consider a random walk {Dt}t≥0 that starts from a 

randomly chosen page. 
• At each step t: 

-  Prob c: Dt = one of the documents with edges from Dt-1  
-  Prob (1 − c): The random walk terminates, and Dt =  

random node 

• Endpoint DT is distributed as PageRank π when T!� 
• Sample from π = do many random walks (with limited 

T)      
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z above 
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here 

x in first 
hour and q 
above 
same as π 
here 

Advantages 

• Exact method: precision improves linearly for all docs 
• Monte Carlo method: precision improves faster for 

high-rank docs 

• Exact method: computationally expensive 
• Monte Carlo method: parallel implementation possible 

• Exact method: must be redone when new pages are 
added 

• Monte Carlo method: continuous update 
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1. MC end-point with random start 

• Simulate N runs of the random walk {Dt}t≥0 initiated 
at a randomly chosen page  

• PageRank of page j = 1,...,n: 
   πj = (#walks which end at j)/N 

• N = O(n2), remember Law of Large Numbers  

• Example:  
1 link 4 link 6 jump 2 link 5 jump 3 
4 link 6 link 5 jump 1 link 4 link 6 
π = [0, 0, 0.5, 0, 0, 0.5]  
2 walks not enough 
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2. MC end-point with cyclic start 

• Simulate N = mn runs of the random walk {Dt}t≥0 
initiated at each page exactly m times 

• PageRank of page j = 1,...,n: 
   πj = (#walks which end at j)/N 

DD2476 Lecture 5, March 4, 2014 

3. MC complete path  

• Simulate N = mn runs of the random walk {Dt}t≥0 
initiated at each page exactly m times 

• PageRank of page j = 1,...,n: 
   πj = (#visits to node j during walks)/N 

• Example:  
1 link 4 link 6 jump 2 link 5 jump 3 
4 link 6 link 5 jump 1 link 4 link 6 
π = [1/6, 1/12, 1/12, 1/4, 1/6, 1/4]  
2 walks not enough 
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4. MC complete path stopping at 
dangling nodes  

• Simulate N = mn runs of the random walk {Dt}t≥0 
initiated at each page exactly m times and 
stopping when it reaches a dangling node 

• PageRank of page j = 1,...,n: 
   πj = (#visits to node j during walks)/   

             (total #visits during walks) 

• Example:  
1 link 4 link 6 jump 2 link 5  
4 link 6 link 5  
π = [1/8, 1/8, 0, 1/4, 1/4, 1/4]  
2 walks not enough 
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5. MC complete path with random 
start 

• Simulate N runs of the random walk {Dt}t≥0 initiated 
at a randomly chosen page and stopping when it 
reaches a dangling node 

• PageRank of page j = 1,...,n: 
   πj = (#visits to node j during walks)/   

             (total #visits during walks) 
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Next 

• Assignment 1 left? Email Johan or Hedvig 
 

• Lecture 6 (March 7, 13.15-15.00)  
-  B1 
-  Readings: Manning Chapter 9 

• Lecture 7 (March 18, 13.15-15.00)  
-  B1 
-  Readings: Manning Chapter 11, 12  

• Computer hall session (March 18, 15.00-19.00) 
- Gul (Osquars Backe 2, level 4) 
-  Examination of computer assignment 2 
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