

PageRank- interpretations

- Authority / popularity / relative information value
- PR_p = the probability that the random surfer will be at page p at any given point in time
- This is called the stationary probability
- How do we compute it?

Power iteration algorithm

Today

DD2476 Search Engines and Information Retrieval Systems Lecture 5 Part 2: Monte Carlo Approximations of PageRank

Hedvig Kjellström hedvig@kth.se www.csc.kth.se/DD2476

- Monte Carlo methods
 - Bishop, Pattern Recognition and Machine Learning, ch 11
- Five Monte Carlo approximations to PageRank
 - Avrachenkov et al, SIAM 2007, sec 1-2

DD2476 Lecture 5, March 4, 2014

Approximate Solutions

- Huge #docs -> exact inference very expensive - Matrix factorization takes us part of the way - But eventually...
- Better solution: find approximation
- One way: Monte Carlo sampling

Monte Carlo Methods

The Monte Carlo principle

- State space z
- \bullet Imagine that we can sample $z^{(l)}$ from the pdf p(z) but that we do not know its functional form
- Might want to estimate for example:

$$E[z] = \sum z \, p(z)$$

• p(z) can be approximated by a histogram over $z^{(l)}$:

$$\hat{q}(z) = \frac{1}{L} \sum_{l=1}^{L} \delta_{z^{(l)}=z}$$

DD2476 Lecture 5, March 4, 2014

Example: Dice Roll

DD2476 Lecture 5, March 4, 2014

What is *p* and *q* for PageRank?

- Discuss with your neighbor (5 mins)
- Graph of connected documents
- Look at each document *z*, compute PageRank
- Quest: Find p(z) = prob that the document z is visited = PageRank score of document z
- Monte Carlo approach: find approximate PageRank $\hat{q}(z)$ by sampling from p(z)

How do we sample from *p* without knowing *p*?

- Discuss with your neighbor (5 mins)
- Simulate a "random surfer" walking in the graph
- Equal probability c/<#links> of selecting any of the <#links> links in a document D
- Probability (1 c) of not following links, but jumping to an unlinked document in the graph

• Record location
$$z^{(l)}$$
at each step /

$$\hat{q}(z) = \frac{1}{L} \sum_{l=1}^{L} \delta_{z^{(l)}=z}$$

DD2476 Lecture 5, March 4, 2014

z above

here

same as D

Monte Carlo Idea

- D = document id
- \bullet Consider a random walk $\{D_t\}_{t\geq 0}$ that starts from a randomly chosen page.
- At each step t:
- Prob c: D_t = one of the documents with edges from $\mathsf{D}_{t\text{-}1}$
- Prob (1 c): The random walk terminates, and $\mathsf{D}_\mathsf{t} = \mathsf{random}$ node

• Endpoint D_T is distributed as PageRank π when $T \rightarrow \infty$ • Sample from π = do many random walks (with limited T)

Five Monte Carlo Approximations to PageRank

Advantages

- Exact method: precision improves linearly for all docs
- Monte Carlo method: precision improves faster for high-rank docs
- Exact method: computationally expensive
- Monte Carlo method: parallel implementation possible
- Exact method: must be redone when new pages are added
- Monte Carlo method: continuous update

1. MC end-point with random start

KTH VETENBER VETENBER

2. MC end-point with cyclic start

- Simulate N = mn runs of the random walk $\{D_t\}_{t\geq 0}$ initiated at each page exactly m times
- PageRank of page j = 1,...,n:

 $n_j = (\#walks which end at j)/N$

DD2476 Lecture 5, March 4, 2014

3. MC complete path

- Simulate N = mn runs of the random walk {D_t}_{t≥0} initiated at each page exactly m times
- PageRank of page j = 1,...,n:
 - $n_j = (\#visits to node j during walks)/N$

DD2476 Lecture 5, March 4, 2014

4. MC complete path stopping at dangling nodes

- Simulate N = mn runs of the random walk {D_t}_{t≥0} initiated at each page exactly m times and stopping when it reaches a dangling node
- PageRank of page j = 1,...,n:
 - π_j = (#visits to node j during walks)/ (total #visits during walks)

5. MC complete path with random start

- Simulate N runs of the random walk $\{D_t\}_{t\geq 0}$ initiated at a randomly chosen page and stopping when it reaches a dangling node
- PageRank of page j = 1,...,n:
 - n_j = (#visits to node j during walks)/
 (total #visits during walks)

Next

- Assignment 1 left? Email Johan or Hedvig
- Lecture 6 (March 7, 13.15-15.00)
- B1
- Readings: Manning Chapter 9
- Lecture 7 (March 18, 13.15-15.00)
 - B1
 - Readings: Manning Chapter 11, 12
- Computer hall session (March 18, 15.00-19.00)
 - Gul (Osquars Backe 2, level 4)
 - Examination of computer assignment 2

DD2476 Lecture 5, March 4, 2014

DD2476 Lecture 5, March 4, 2014