DD2476: Lecture 5

- Recap: Ranked retrieval
- We want top-ranking documents to be both relevant and authoritative
- Relevance - cosine scores $\cos (q, d)$
- Authority - query-independent property $g(d)$
- net_score $(q, d)=\cos (q, d)+g(d)$
- PageRank is a way of estimating the authority of a page

The Web as a directed graph

Using link structure for ranking

- Assumption: A link from X to Y signals that X 's author perceives Y to be an authoritative page.
- X "casts a vote" on Y.
- Simple suggestion: Rank = number of in-links
- However, there are problems with this naive approach.

PageRank: basic ideas

- WWW's particular structure can be exploited
- pages have links to one another
- the more in-links, the higher rank
- in-links from pages having high rank are worth more than links from pages having low rank
- this idea is the cornerstone of PageRank (Brin \& Page 1998)
- A "random surfer" that randomly follows links will spend more time on pages with high PageRank

PageRank - first attempt

$$
P R(p)=\sum_{q \in i n(p)} \frac{P R(q)}{L_{q}}
$$

- p and q are pages
- in (p) is the set of pages linking to p
- L_{q} is the number of out-links from q

The random surfer model

- Imagine a random surfer that follow links
- The link to follow is selected with uniform probability
- If the surfer reaches a sink (a page without links), he randomly restarts on a new page
- Every once in a while, the surfer jumps to a random page (even if there are links to follow)

PageRank - second attempt

- With probability 1-c the surfer is bored, stops following links, and restarts on a random page
- Guess: Google uses $c=0.85$

$$
P R(p)=c\left(\sum_{q \in \text { in }(p)} \frac{P R(q)}{L_{q}}\right)+\frac{(1-c)}{N}
$$

- Without this assumption, the surfer will get stuck in a subset of the web.

PageRank example

$P R_{4}=0.85 \cdot\left(\frac{P R_{2}}{2}+P R_{3}\right)+\frac{0.15}{5}$
$P R_{3}=0.85 \cdot\left(\frac{P R_{0}}{3}+P R_{1}+\frac{P R_{2}}{2}+\frac{P R_{4}}{4}\right)+\frac{0.15}{5}$
$P R_{2}=P R_{1}=0.85 \cdot\left(\frac{P R_{0}}{3}+\frac{P R_{4}}{4}\right)+\frac{0.15}{5}$
$P R_{0}=0.85 \cdot\left(\frac{P R_{4}}{4}\right)+\frac{0.15}{5}$

PageRank- interpretations

- Authority / popularity / relative information value
- $P R_{p}=$ the probability that the random surfer will be at page p at any given point in time
- This is called the stationary probability
- How do we compute it?

Random surfer as a Markov chain

- The random surfer model suggests a a Markov chain formulation
- A Markov chain consists of n states, plus an $n \times n$ transition probability matrix \mathbf{P}.
- At each step, we are in exactly one of the states.
- For $1 \leq i, j \leq n$, the matrix entry $P_{i j}$ tells us the probability of j being the next state, given we are currently in state i.

Ergodic Markov chains

- A Markov chain is ergodic if
- you have a path from any state to any other
- For any start state, after a finite transient time T_{0}, the probability of being in any state at a fixed time $T>T_{0}$ is nonzero.
- Our transition matrix is non-zero everywhere \leftrightarrow the graph is strongly connected \leftrightarrow the Markov chain is ergodic \leftrightarrow unique stationary probabilities exist

Transition matrices

$\mathbf{P}\left[\begin{array}{rrrrr}0 & 0.33 & 0.33 & 0.33 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0 & 0 & 1 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0\end{array}\right]$

$\mathrm{G}=\mathbf{c} \mathbf{P}+(1-\mathrm{c}) \mathrm{J}$
$\mathbf{J}\left[\begin{array}{lllll}0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2\end{array}\right]$
$\left[\begin{array}{lllll}0.0300 & 0.3105 & 0.3105 & 0.3105 & 0.0300 \\ 0.0300 & 0.0300 & 0.0300 & 0.8800 & 0.0300 \\ 0.0300 & 0.0300 & 0.0300 & 0.4550 & 0.4550 \\ 0.0300 & 0.0300 & 0.0300 & 0.0300 & 0.8800 \\ 0.2425 & 0.2425 & 0.2425 & 0.2425 & 0.0300\end{array}\right]$

Probability vectors

- A probability (row) vector $\mathbf{x}=\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}\right)$ tells us where the walk is at any point.
- E.g., (000...1...000) means we're in state i.

$$
1 \quad i \quad n
$$

- More generally, the vector $\mathbf{x}=\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}\right)$ means the walk is in state i with probability x_{i}.
- xG gives the next time step.
- \mathbf{x} is stationary if $\mathbf{x}=\mathbf{x G}$

Stationary probabilites

- Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ denote the row vector of stationary probabilities.
- If our current position is described by a, then the next step is distributed as aG.
- But \mathbf{a} is the steady state, so $\mathbf{a}=\mathbf{a G}$.
- Solving the matrix equation $\mathbf{x = x G}$ gives us a.
- So a is the (left) eigenvector for \mathbf{G}.
- (Corresponds to the "principal" eigenvector of \mathbf{G} with the largest eigenvalue.)
- Transition probability matrices always have largest eigenvalue 1.

Example

For this example, the stationary
probabilities are $a_{1}=1 / 4$ and $a_{2}=3 / 4$.
$\left[\begin{array}{ll}1 / 4 & 3 / 4\end{array}\right]\left[\begin{array}{ll}1 / 4 & 3 / 4 \\ 1 / 4 & 3 / 4\end{array}\right]=\left[\begin{array}{ll}1 / 4 \cdot 1 / 4+3 / 4 \cdot 1 / 4 & 1 / 4 \cdot 3 / 4+3 / 4 \cdot 3 / 4\end{array}\right]=\left[\begin{array}{ll}1 / 4 & 3 / 4\end{array}\right]$

Power iteration

- Recall, regardless of where we start, we eventually reach the stationary vector a.
- Start with any distribution (say $\mathbf{x}=(10 . . .0)$).
- After one step, we're at xG;
- after two steps at (xG)G , then ((xG)G)G and so on.
- "Eventually", for "large" $k, \mathbf{x G}^{k}=\mathbf{a}$.

Power iteration algorithm

Let $x=(0, \ldots, 0)$ and x^{\prime} an initial state, say ($1,0, \ldots, 0$)
while ($\left.\left|x-x^{\prime}\right|>\varepsilon\right)$:

$$
\begin{aligned}
& \mathbf{x}=\mathbf{x}^{\prime} \\
& \mathbf{x}^{\prime}=\mathbf{x G}
\end{aligned}
$$

This algorithm converges very slowly.

Example

- Stationary probabilities:
(0.102, 0.131, 0.131, 0.298, 0.339)
found after 17 iterations starting from (0.2, 0.2, 0.2, 0.2, 0.2)

Approximating PageRank

- Power iteration is slow - every iteration requires N^{2} multiplications
- with our Wikipedia corpus, that's 10^{12} multiplications
- However:
- many of these multiplications are unnecessary
- random jumps can be computed faster
- if there are few sinks (like in Wikipedia), jumps from sinks can be approximated faster

Approximation method

for every i:
for every link $i \rightarrow j$:
$x^{\prime}[j]+=x[i] * c / o u t[i]$
$x^{\prime}[i]+=(1-c) / N$
$x^{\prime}[i]+=s / N / N$
$\mathbf{x}=\mathbf{x}^{\prime} \quad$ where s is the number of sinks $\mathbf{x}^{\prime}=0 \quad$ Iterate until convergence or a fixed number of times (e.g. 1000) Caveat: this works well for Wikipedia but probably not for the web

DD2476 Search Engines and Information Retrieval Systems Lecture 5 Part 2: Monte Carlo Approximations of PageRank
Hedvig Kjellström
hedvig@kth.se
www.csc.kth.se/DD2476

Today

- Monte Carlo methods
- Bishop, Pattern Recognition and Machine Learning, ch 11
- Five Monte Carlo approximations to PageRank
- Avrachenkov et al, SIAM 2007, sec 1-2

DD2476 Lecture 5, March 4, 2014

Approximate Solutions

- Huge \#docs -> exact inference very expensive
- Matrix factorization takes us part of the way
- But eventually...
- Better solution: find approximation
- One way: Monte Carlo sampling

The Monte Carlo principle

- State space z
- Imagine that we can sample $z^{(l)}$ from the pdf $p(z)$ but that we do not know its functional form
- Might want to estimate for example:

$$
E[z]=\sum z p(z)
$$

- $p(z)$ can be approximated by a histogram over $z^{(l)}$:
$\hat{q}(z)=\frac{1}{L} \sum_{l=1}^{L} \delta_{z^{(l)}=z}$
DD2476 Lecture 5, March 4, 2014

Example: Dice Roll

Example: Dice Roll

- The probability of outcomes of dice rolls: $p(z)=\frac{1}{6}$
- Exact solution:

What would
happen if the
dice was bad?

- Monte Carlo approximation:
- Roll a dice a number of times, might get
$z^{(1)}=6$
$z^{(2)}=4$
$z^{(3)}=1$
$z^{(4)}=6 \quad z^{(5)}=6$

DD2476 Lecture 5, March 4, 2014

What is p and q for PageRank?

- Discuss with your neighbor (5 mins)
- Graph of connected documents
- Look at each document z, compute PageRank
- Quest: Find $p(z)=$ prob that the document z is visited $=$ PageRank score of document z
- Monte Carlo approach: find approximate PageRank $\hat{q}(z)$ by sampling from $p(z)$
- The Law of Large Numbers

How do we sample from p without knowing p ?

- Discuss with your neighbor (5 mins)

Five Monte Carlo Approximations to PageRank

- Equal probability $\mathrm{c} /<\#$ links $>$ of selecting any of the <\#links> links in a document D
- Probability $(1-c)$ of not following links, but jumping to an unlinked document in the graph
- Record location $z^{(l)}$ at each step I
$\hat{q}(z)=\frac{1}{L} \sum_{l=1}^{L} \delta_{z^{(l)}=z}$
DD2476 Lecture 5, March 4, 2014
z above

Monte Carlo Idea

- $D=$ document id
- Consider a random walk $\left\{D_{t}\right\}_{t \geq 0}$ that starts from a randomly chosen page. - At each step t:
- Prob c: $D_{t}=$ one of the documents with edges from D_{t-1}
- Prob ($1-\mathrm{c}$): The random walk terminates, and $D_{t}=$ random node


```None
```

- Endpoint D_{T} is distributed as PageRank n when $T \rightarrow \infty$ - Sample from $п=$ do many random walks (with limited T)
\qquad

Advantages

- Exact method: precision improves linearly for all docs
- Monte Carlo method: precision improves faster for high-rank docs
- Exact method: computationally expensive
- Monte Carlo method: parallel implementation possible
- Exact method: must be redone when new pages are added
- Monte Carlo method: continuous update

1. MC end-point with random start

- Simulate N runs of the random walk $\left\{D_{t}\right\}_{t \geq 0}$ initiated at a randomly chosen page
- PageRank of page $j=1, \ldots, n$:

$$
n_{j}=(\# \text { walks which end at } j) / N
$$

- $\mathbf{N}=\mathbf{O}\left(\mathbf{n}^{2}\right)$, remember Law of Large Numbers
- Example:

1 link 4 link 6 jump 2 link 5 jump (3)
4 link 6 link 5 jump 1 link 4 link 6

$$
\pi=[0,0,0.5,0,0,0.5]
$$

2 walks not enough

2. MC end-point with cyclic start

- Simulate $N=m n$ runs of the random walk $\left\{D_{t}\right\}_{t \geq 0}$ initiated at each page exactly m times
- PageRank of page $j=1, \ldots, n$:

$$
n_{j}=(\# \text { walks which end at } j) / N
$$

3. MC complete path

- Simulate $N=m n$ runs of the random walk $\left\{D_{t}\right\}_{t \geq 0}$ initiated at each page exactly m times
- PageRank of page $\mathrm{j}=1, \ldots, \mathrm{n}$:
$\mathrm{n}_{\mathrm{j}}=$ (\#visits to node \mathbf{j} during walks)/ N
- Example:

4. MC complete path stopping at dangling nodes

- Simulate $N=m n$ runs of the random walk $\left\{D_{t}\right\}_{t \geq 0}$ initiated at each page exactly m times and stopping when it reaches a dangling node
- PageRank of page $j=1, \ldots, n$:
$n_{j}=$ (\#visits to node \mathbf{j} during walks)/
(total \#visits during walks)
- Example:
(4) ink (4) in (2)
$\Pi=[1 / 8,1 / 8,0,1 / 4,1 / 4,1 / 4]$
2 walks not enough

5. MC complete path with random start

Next

- Simulate N runs of the random walk $\left\{D_{t}\right\}_{t \geq 0}$ initiated at a randomly chosen page and stopping when it reaches a dangling node
- PageRank of page $j=1, \ldots, n$:
$n_{j}=$ (\#visits to node \mathbf{j} during walks)/ (total \#visits during walks)
- Assignment 1 left? Email Johan or Hedvig

Lecture 6 (March 7, 13.15-15.00)

- B1
- Readings: Manning Chapter 9
- Lecture 7 (March 18, 13.15-15.00)
- B1
- Readings: Manning Chapter 11, 12
- Computer hall session (March 18, 15.00-19.00)
- Gul (Osquars Backe 2, level 4)
- Examination of computer assignment 2

