

EH2740 Computer Applications in Power Systems

Lecture 2

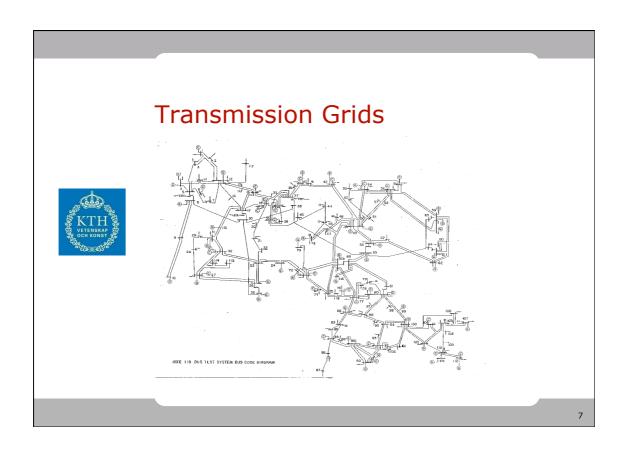
Lars Nordström larsn@ics.kth.se

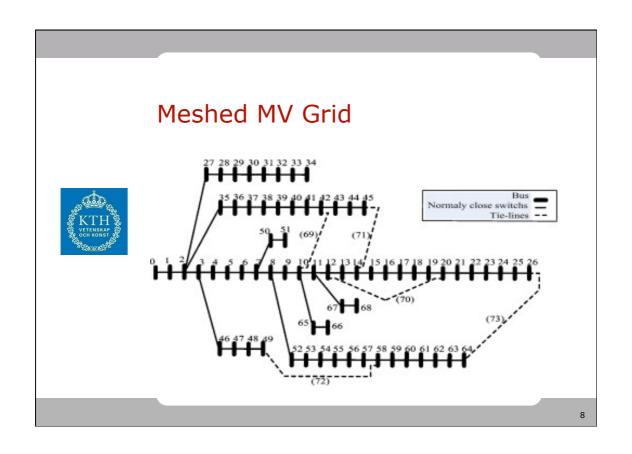
Outline

- Transmission Grids vs Distribution grids
- Radial grids vs Meshed grids
- Low Voltage feeders
- 2. Power System Apparatus & Models
 - Line & Switchyard equipment
 - Compensators
- 3. Substation Configurations
 - Reliable switching configurations

3

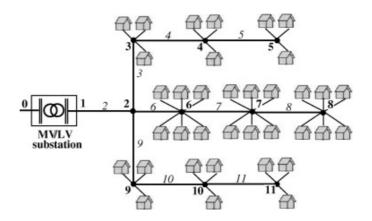
Frequency Control Always balance in the electrical system: Mechanical power Electrical power $\Sigma P_{GEN} = \Sigma P_{LOAD} + \Sigma P_{LOSS}$ P_{GEN1} P_{TURB1} Electrical power P_{TURB2} P_{GEN2} system with losses and consumption P_{TURB3} P_{GEN3} \mathbf{P}_{GENi}


Tools for Voltage Control



- Main goal is to keep an even voltage profile.
- Generators with automatic voltage regulator (AVR) control voltage at generator bus
- Transformers with tapchanger. Step-wise control of voltage at one side
- Shunt reactors consume reactive power, which decreases the voltage
- Shunt capacitors produce reactive power, which increases the voltage
- Shunt compensation can be controlled
 - manually (from the control room)
 - with voltage automatic control
 - with time control
 - by a centralised logic

5


Voltage Control Hierarchy Reactors consume surplus > of reactive power 400 Capacitors compensate reactive losses and volta 130 drop Tap changer controls voltage at low tension sid 40 Generators control voltage at own bus Compensation of 10 reactive load Off-line tap changer 0,4 6

LV Feeders

9

Distribution Networks

- Design of Distribution Network varies significantly depending on:
 - Type of area(s) served
 - Voltage levels
 - Type of overlying network
 - Overhead or underground networks
 - Sizing of Distribution substations
 - Required performance of the network
 - Projected load growth
 - Losses
 - Historical/Cultural factors
 - Cost of installation
 - Cost of ownership

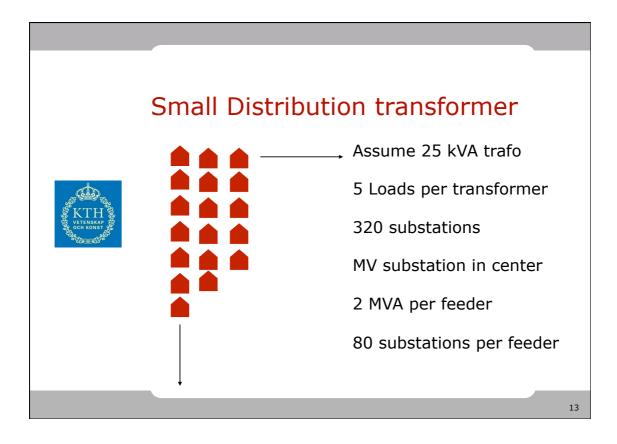
Selection of Voltage level

What are the determining factors?	0,4
– High voltage	1
 Low losses 	J 2
- Low voltage	3,3
 Less insulation problems, smaller 	6
equipment	10
Other factors	11
 Already installed equipment 	20
A 11 L 1111 C	25

Availability of spare parts, price,...Overlying network

- Distances

1.


33


Simple design example

Assume 1600 loads Located 40*40 Each at S = 5 kVA Equidistant 25 m

Adding some economic data

Trafo Rating (kvA)	Number	LV length (km)	MV length (km)	OH \$/kVA	Cable \$/kVA
25	320	32	9,7	128	670
125	64	38,4	8,9	80	338
250	32	39,2	5,1	68	275
500	16	39,6	4,5	77	248
1000	8	52	3,5	79	294

Assuming some typical budget figures for MV & LV cables MV & LV OH lines Distribution Transformers

Example courtesy of "Control & Automation of Electric Power Distribution Networks" ${\tt J}$ Northcote-Green.

15

Additional concerns

- In addition to cost of building and operating the distribution network, the reliability of the network is essential.
- A number of indices are used to determine the quality of service delivered.
- Additionally, regulators specify levels of quality and or cost caps that the distribution company must follow or be fined.

System Performance Indices

SAIDI

System Average Interruption Duration Index
 <u>Sum of all customer interruption durations</u>
 Total number of customers

SAIFI

System Average Frequency of Interruption Index
 <u>Total number of customer interruptions</u>
 Total number of customers

1.

Customer Performance Indices

CAIDI

Customer Average Duration of Interruption Index
 <u>Sum of all customer interruption durations</u>

Total number of interruptions

CAIFI

Customer Average Interruption Frequency Index
 <u>Total number of interruptions</u>
 Number of customers that have experienced an interruption

CTAIDI

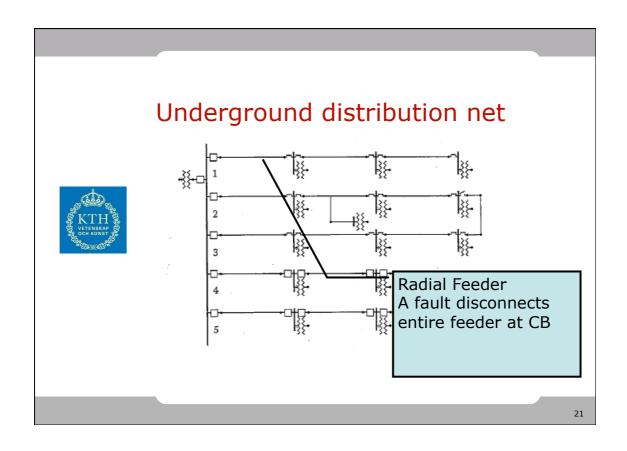
Customer Total Average Interruption Duration Index
 <u>Sum of all customer interruption durations</u>
 Number of customer that have experienced an interruption

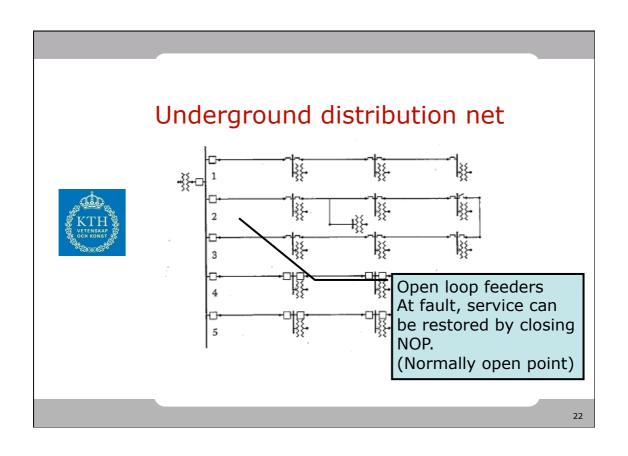
Some typical data (US)

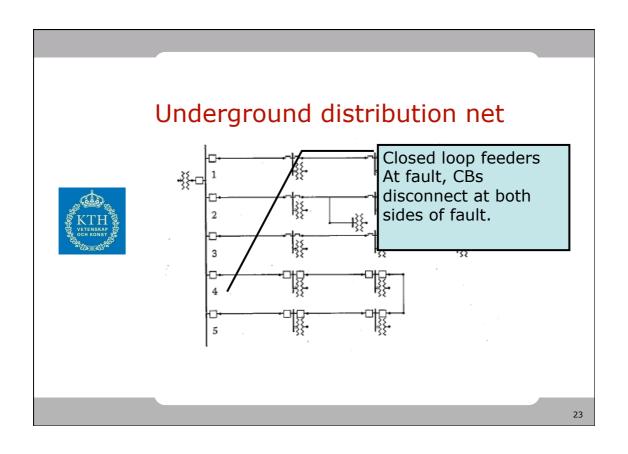
Overall Averages of Sustained Reliability Indices from January 1st – December 31st 2002				
SAIFI (Interruptions Per year)	SAIDI (Minutes per year)	CAIDI (Minutes)	CTAIDI (Minutes)	CAIFI (# of Sustained Interruptions)
3.25	64.58	66.32	23.15	2.10

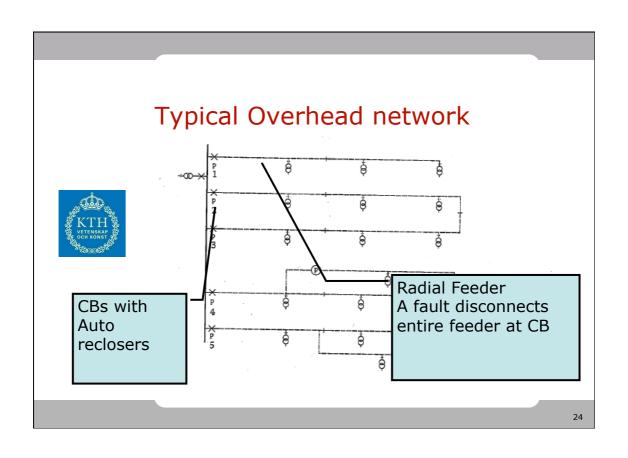
Overall Averages of Sustaine 2000	lity Indices from January 1st – December 31st

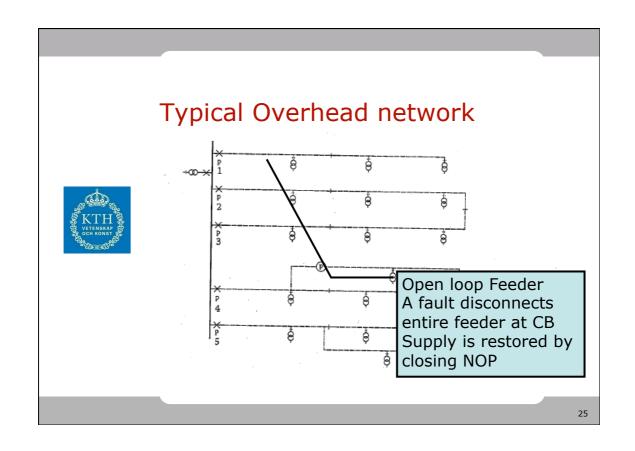
SAIFI (Interruptions Per year)	SAIDI (Minutes per year)	CAIDI (Minutes)	CTAIDI (Minutes)	CAIFI (# of Sustained Interruptions)
4.68	55.88	91.03	17.81	10.67

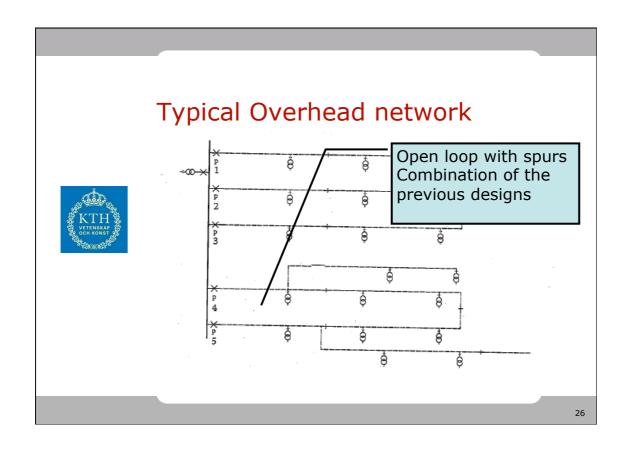

 $Source: APPA\ 2003:\ Distribution\ System\ Reliability\ \&\ Operations\ Survey\ http://www.appanet.org/files/PDFs/Strange2004.pdf$


19


Main challenge for DSOs




 Designing and operating a distribution network at low cost while maintaining high level of reliability

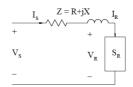


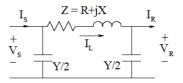
Outline

- Transmission Grids vs Distribution grids
- Radial grids vs Meshed grids
- Low Voltage feeders
- 2. Power System Apparatus & Models
 - Line & Switchyard equipment
 - Compensators
- 3. Substation Configurations
 - Reliable switching configurations

27

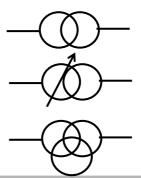
AC Power line




- Three phase AC
- Transfers energy with low losses
- Voltage levels from 0,4kV to 400 kV(+)

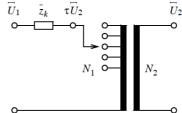
PI model of Lines

- Short line models
- Medium line models
- · Long line models
- Line parameters (Y,R,X) vary with line type

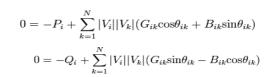

29

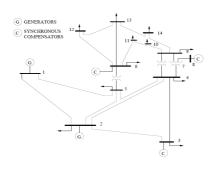
Power Transformer

- Transfers energy between different voltage level
- Higher voltages are single pole
- Can shift phase angles



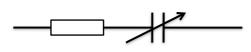
Tap changer



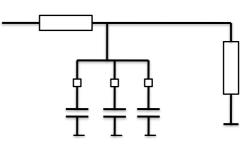


31

Power System models



Series capacitor


- Compensates for inductance in long power lines
- Connected manually/mechanically

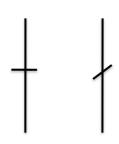
33

Shunt capacitors

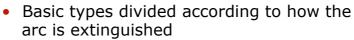
 Compensates for inductive loads by drawing leading current

Shunt Reactance

- Consumes reactive power
- Compensates for shunt capacitances in long power lines


31

Disconnectors



- Disconnects equipment
- Cannot break load currents

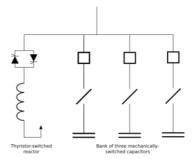
Circuit Breakers

- Vaccum insulated
- Gas insulated (SF6)
- Oil insulated
- Air insulated

37

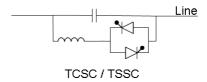
HVDC link

- Direct Current
- Rectifier stations convert to/from AC
- Controllable energy transfer with low losses
- No reactive components



SVC

- Shunt capacitor with greater controlability
- Capacitor banks in parallell with tyristor controlled inductance
- Part of the FACTS concept



39

TCSC - Thyristor controlled series capacitor

- Series capacitor with greater controllability
- Series capacitor in parallel with inductance
- Part of the FACTS concept

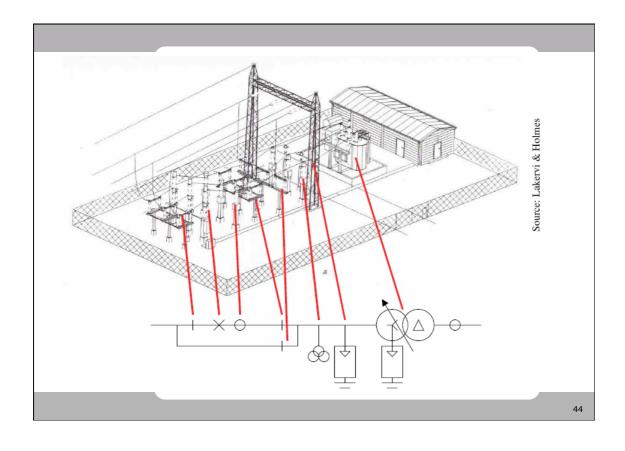
Outline

- Transmission Grids vs Distribution grids
- Radial grids vs Meshed grids
- Low Voltage feeders
- 2. Power System Apparatus & Models
 - Line & Switchyard equipment
 - Compensators
 - Generating equipment
- 3. Substation Configurations
 - Reliable switching configurations

41

Transmission Substation

Open air, vaccum insultated

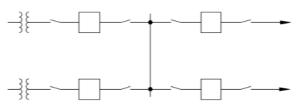


Gas Insulated

Distribution Substation

- 10 25 kV range
- Equipment housed in compartments
- Separate compartments for
 - -Disconnector
 - -Breaker
 - -Feeder
 - -Measurement

Evaluation Criteria

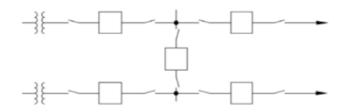


- Reliability
- Operation Flexibility
- Maintenance Flexibility
- Costs

45

Single Bus Configuration

Advantages:

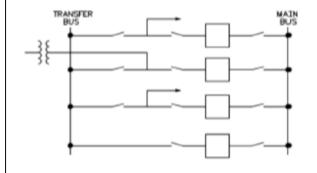

- Lowest cost
- Small land area
- Easily expandable
- Simple in concept and operation

Disadvantages:

- Single bus arrangement has the lowest reliability
- Failure of a bus fault causes loss of entire substation
- Maintenance switching can complicate

Sectionalised Bus

Advantages:

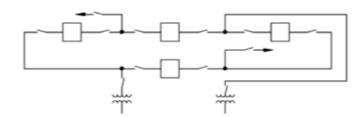

- Flexible operation
- Isolation of bus sections for maintenance
- Loss of only part of the substation for a breaker failure or bus fault

Disadvantages:

- Additional circuit breakers needed for sectionalizing, thus higher cost
- Sectionalizing may cause interruption of non-faulted circuits

47

Main & Transfer Bus

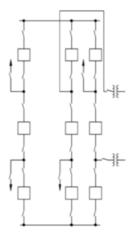

Advantages:

- Maintain service and protection during circuit breaker maintenance
- Reasonable in cost
- Fairly small land area
- Easily expandable

Disadvantages:

- Additional circuit breaker needed for bus tie
- Protection and relaying may become complicated
- Bus fault causes loss of the entire substation

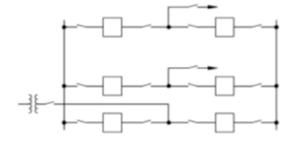
Ring bus configuration


dvantages:

- Flexible operation
- High reliability
- Double feed to each circuit
- No main buses
- Expandable to breaker-and-ahalf configuration
- Isolation of bus sections and circuit breakers for maintenance without circuit disruption
- Ring Bus Disadvantages:
 - During fault, splitting of the ring may leave undesirable circuit combinations
 - Each circuit has to have its own potential source for relaying
 - Usually limited to 4 circuit positions, although larger sizes up to 10 are in service. 6 is usually the maximum terminals for a ring bus

49

Breaker & a half configuration


Advantages:

- Flexible operation and high reliability
- Isolation of either bus without service disruption
- Isolation of any breaker for maintenance without service disruption
- Double feed to each circuit
- Bus fault does not interrupt service to any circuits
- All switching is done with circuit breakers

Disadvantages:

- One-and-a-half breakers needed for each circuit
- More complicated relaying as the center breaker has to act on faults for either of the 2 circuits it is associated with
- Each circuit should have its own potential source for relaying

Double breaker

Advantages:

- Flexible operation and very high reliability
- Isolation of either bus, or any breaker without disrupting service
- Double feed to each circuit
- No interruption of service to any circuit from a bus fault

Disadvantages:

• Very high cost – 2 breakers per circuit

51

Questions or comments?