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1 Introduction

Loop-shaping is a classical procedure for control design. In the basic course it was
denoted lead lag design. Loop-shaping was introduced during world war II and it was
used to construct single variable circuits, such as amplifiers in feedback (Bode). This
knowledge has later been transferred to other areas of automatic control, and it has
been extended to multi-variable systems, i.e., systems with multiple input and output
signals.
The idea is to shape the open-loop gain with a controller in order to achieve intended
properties of the closed-loop system under feedback. In the 70’ies and 80’ies advanced
methods for loop-shaping based on optimization were developed. However, in this
computer exercise we will focus on basic classical loop-shaping. Frequency domain
descriptions are fundamental in control design!
We will here only consider SISO systems (single input single output), but the ideas are
also applicable to MIMO systems (multiple input multiple output).
Preparations: Chapters 7.1-7.4 in the course book (Ljung, Glad, “Control theory”).
It is also recommended to repeat Chapter 5.5 in the basic course book (Glad, Ljung,
“Reglerteknik-Grundläggande teori”).
Presentation: All problems in this exercise should be solved and be presented in a
written report. The date when the report should be handed in is indicated on the
course website. The report should be a full report, contain abstract and conclusions,
relevant figures and tables with captions and legends, etc. Focus on explaining what
you have done, and do not repeat theorems but cite them. Remember to write concise
(a report is not a novel), be specific in your writing (“the overshoot is 20%” compared
to “the overshoot is not so good”), and check your speling. The report will be graded
based on both the content and presentation. The exercise should be performed in pairs
of students.

2 Background

Consider the control system in Figure 1.
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Figure 1: K–controller, G–system, r–reference signal, u–control signal, d–disturbance
signal, y–output signal, n–measurement noise.
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The loop gain is given by L = GF , the sensitivity function S = (I + L)−1 and the
complementary sensitivity function T = (I+L)−1L. Remember that we have S+T = I.
The control error depends on the input signals as

e = r − y = Sr − Sd+ Tn.

Since we wish to have a small control error, we obtain the following conditions

e ≈ 0⇒

i) S ≈ 0 ⇒ T ≈ I ⇒ L large
ii) T ≈ 0 ⇒ S ≈ I ⇒ L small

We obviously have contradictive conditions! The case i) corresponds to reference track-
ing and disturbance attenuation while case ii) corresponds to noise attenuation (and
sensitivity to model errors, robustness). For example, if we wish to track low frequency
reference signals we have to design the loop gain to be large at low frequencies.
Apart from keeping the control error small, the control signal should not be too large
or vary too much. Since

u = F (r − y − n)

this condition implies that the control gain must not be designed too large, F small
⇒ L = GF small.
Stability is another important issue. The slope of the curve |L(iω)| is coupled to the
phase arg{L(iω)}. For example, L = a/sn has slope −n and phase −nπ/2. In order
to keep a reasonable stability margin, |L| must not have too large slope around the
cross-over frequency ωc. Typically, |L| is designed to have slope ≈ −1 at ωc.
Also note that the phase margin is coupled to control performance. For example we
have resonance peaks MS = maxω |S| and MT = maxω |T |

MT >
1
φM

; MS >
1
φM

where the phase margin φM is given in radians. For example, if we demand that the
resonance peaks should be smaller than 2, then the phase margin has to be larger than
30◦.
Such contradictive constraints give rise to different strategies to shaping the loop L
so that performance demands are met. They also provide limits of achievable control
performance.

3 Introduction to Control System Toolbox

In this computer exercise we will use MATLAB to shape the loop, just as we did in
the basic course. Most of the functions are in Control System Toolbox. Let us start
by defining some useful function. Recall that you get access to the MATLAB help be
typing help “function name".
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A transfer function
G(s) = s+ 2

s2 + 2s+ 3
is defined in MATLAB by typing

s=tf(’s’); G=(s+2)/(s2+2s+3)

The product of two transfer functions is obtained by

G12 = G1 * G2

For a system with 2 inputs and 2 outputs, the closed-loop transfer matrix is obtained
with

S=feedback(eye(2),G*F); T=feedback(G*F,eye(2))

For a SISO system this can be written

S=1/(1+G*F); T=G*F/(1+G*F)

For numerical reasons it is very important to use the function minreal, for example
minreal(T). This creates an equivalent system where all canceling pole/zero pair or
non minimal state dynamics are eliminated.
The bode diagram for G is plotted by typing

bode(G) or bode(G,{wmin,wmax})

Amplitude and phase at a given frequency are obtained by

[m,p]=bode(G,w)

Phase margin, amplitude margin and corresponding frequencies are obtained by

[Gm,Pm,wp,wc]=margin(G*F)

To simulate a step response in the control signal, use the function

step(G) or step(G,tfinal)

In the same way, to simulate a step response in the reference signal, we type

step(T)

4 Exercises

4.1 Basics

Consider a system which can be modeled by the transfer function

G(s) = 3(−s+ 1)
(5s+ 1)(10s+ 1) .
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Exercise 4.1.1. Use the procedure introduced in the basic course to construct a lead-
lag controller which eliminates the static control error for a step response in the refer-
ence signal.

F (s) = K
τDs+ 1
βτDs+ 1︸ ︷︷ ︸

Lead

τIs+ 1
τIs+ γ︸ ︷︷ ︸

Lag

The phase margin should be 30◦ at the cross-over frequency ωc = 0.4 rad/s.
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Exercise 4.1.2. Determine the bandwidth of the closed-loop system and the resonance
peak MT . Also, determine the rise time and the overshoot for step changes in the
reference when the controller designed in 4.1.1. is used.
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Exercise 4.1.3. Modify the controller in 4.1.1. such that the phase margin increases
to 50◦ while the cross-over frequency is unchanged. For the corresponding closed-loop
system, determine the bandwidth and resonance peak. Also, determine the rise time
and the overshoot of the step response.
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4.2 Disturbance attenuation

Now we will construct a controller which both tracks the reference signal and attenuates
disturbances. The block diagram of the control system is given in Figure 2. We assume
that the signals have been scaled such that |d| < 1, |u| < 1 and |e| < 1 where e = r−y.
The exercise is about designing Fr and Fy in Figure 2 such that:

• The rise time for a step change in the reference signal less than 0.2 s and the
overshoot is less than 10%.
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• For a step in the disturbance, we have |y(t)| ≤ 1 ∀t and |y(t)| ≤ 0.1 for t > 0.5 s.

• Since the signals are scaled the control signal obeys |u(t)| ≤ 1 ∀t.

Fr(s) Σ Fy(s) G(s) Σ

Gd(s)

yr u

d

−

Figure 2: Fr–prefilter, Fy–feedback controller, G–system, Gd–disturbance dynamics,
r–reference signal, u–control signal, d–disturbance signal, y–measurement signal.

The transfer functions have been estimated to

G(s) = 20
(s+ 1)(( s

20)2 + s
20 + 1)

Gd(s) = 10
s+ 1

Exercise 4.2.1. For which frequencies is control action needed? Control is needed
at least at frequencies where |Gd(jω)| > 1 in order for disturbances to be attenuated.
Therefore the cross-over frequency must be large enough. First, try to design Fy such
that L(s) ≈ ωc/s and plot the closed-loop transfer function from d to y and the
corresponding step response. (A simple way to find L = ωc/s is to let Fy = G−1ωc/s.
However, this controller is not proper. A procedure to fix this is to “add” a number of
poles in the controller such that it becomes proper. How should these poles be chosen?)
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A loop gain of slope -1 at all frequencies gives in our case poor disturbance attenuation.
To understand the reason for this, note that the output is given by

y = SGdd = (1 + L)−1Gdd.

Provided the signals have been scaled we want |(1 + L)−1Gd| < 1 for all ω. For
frequencies where |Gd| > 1 this approximately implies |L| > |Gd| or |Fy| > |G−1Gd|.
Most often we also want integral action and as a starting point we can choose

Fy = s+ ωI

s
G−1Gd, (1)
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where ωI determines the frequency range of efficient integral action. We see that if
Gd ≈ 1, the controller should contain the inverse of the system. On the other hand if
Gd 6= 1 the controller should be designed in some other fashion. Especially, we observe
that if the disturbance is on the input side to the system we have Gd = G and then Fy

should be chosen as a PI controller according to (1).
Note that the controller (1) cannot be used if it is not proper, causal and stable. To
ensure these properties, approximations of (1) may be necessary.

Exercise 4.2.2. Let us now reconstruct Fy according to the instructions above. We will
start with the disturbance attenuation. In a second step, adjustments can be made on
Fr to obtain the desired reference tracking properties. Start by choosing Fy according
to (1). Try different approximations of the product G−1(s)Gd(s) and choose ωI large
enough so that step disturbances are attenuated according to the specifications.
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Exercise 4.2.3. To fulfill the reference tracking specifications, we can combine lead
lag control and prefiltering of the reference signal. First, try to add lead action to Fy

to reduce the overshoot. Then it can be necessary to add prefilter action to fulfill all
specifications. Note that Fr should be as simple as possible (why?). Also, remember
to check the size of the control signal (u = FyFrSr − FyGdSd)! Typically a low pass
filter is chosen, for example

Fr = 1
1 + τs

.
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Exercise 4.2.4. Finally, check that all specifications are fulfilled. Plot the sensitivity
and complementary sensitivity functions.
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