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1 Introduction

In this computer exercise we will investigate properties of multivariable systems. The
application is a model of a four-tank-process. In particular we will consider pairings
between different input and output signals and non-minimum phase dynamics. The
pairings are analyzed using RGA and we will investigate their influence in decentralized
PI control.
Preparations: Chapters 3.3, 3.5, 6.5, 7.3-7.5, 7.7 and 8.3 in Glad, T. and Ljung, L.:
“Control theory—multivariable and nonlinear methods”.
Presentation: All problems in this exercise should be solved, but only the tasks on
the report form should be handed in. The report form and the date when it should be
handed in can be found on the course website. The exercise should be performed in
pairs of students.

2 Theoretical overview

This section contains a short overview of basic theory for multivariable systems. The
content is based on the course book.

2.1 Poles and zeros

As for SISO systems we can define poles and zeros for a linear MIMO system with
transfer matrix G(s).
The poles of G(s) are defined as the eigenvalues of the system matrix A in a minimal
state space realization of the system and they are calculated as the roots of the pole
polynomial, det(sI −A). The pole polynomial can also be obtained by calculating the
least common denominator of all sub-determinants of G(s).
It is more difficult to extend the definition of zeros from the SISO case to the MIMO
case. The most common definition of a zero of the system is a value of s where the
transfer matrix G(s) looses rank. For the special case of square transfer matrices, the
zeros are given by the roots of detG(s) = 0.

2.2 Singular values, directions and H∞ norms

The singular values σi of a matrix A are defined as σi =
√
λi, where λi are the eigen-

values of the matrix A∗A. The largest singular value of A is denoted σ(A), and the
smallest as σ(A). If y = Ax, it follows from the singular value definition that

σ(A) ≤ |y|
|x|
≤ σ(A)

where the relation between the norm of y and the norm of x, |y|/|x|, can be interpreted
as the gain of the matrix A. If x is parallel with the eigenvector corresponding to

1



the largest eigenvalue of ATA then we have |y| = σ(A)|x|, and if x is parallel to the
eigenvector corresponding to the smallest then we obtain |y| = σ(A)|x|. This way we
can define directions corresponding to the largest and smallest singular value for A
respectively.
For a linear stable multivariable system with transfer matrix G(s) we have

Y (iω) = G(iω)U(iω)

where Y (s) and U(s) are the Laplace transforms of the system’s output and input
signals. According to the definition of singular values we therefore have

σ(G(iω)) ≤ |Y (iω)|
|U(iω)| ≤ σ(G(iω))

Introducing
|G(iω)| := σ(G(iω))

it holds
|Y (iω)| ≤ |G(iω)||U(iω)|.

This notation is analogous to the SISO case where the norm is interpreted as the
absolute value of G(iω), and the inequality above turns to an equality.
To understand the inequalities in the MIMO case we can choose the input parallel to
the direction corresponding to the largest or smallest singular values of G(iω). The
directions decide the “mix” of the input signal components that results in the largest
and smallest gain of the system respectively.
The largest gain of the multivariable system G(iω) is denoted ‖G‖∞, which is given by

‖G‖∞ = max
ω
|G(iω)|.

‖G‖∞ is called the H∞ norm of G. For output signal y(t) and input signal u(t) it holds

‖y‖ ≤ ‖G‖∞‖u‖.

Therefore the H∞ norm can be interpreted as the time domain gain of the system. It
holds

sup
u

‖y‖
‖u‖

= ‖G‖∞,

which can be seen as the definition of the H∞ norm for G.

2.3 Decentralized control

A fundamental problem in multivariable control is the pairings between the inputs
and outputs. This means that if one input changes there is generally a change in all
outputs. A measure of the strength of the pairings in a multivariable system, G(s), is
given by the Relative Gain Array, RGA of the transfer matrix G. It is defined by

RGA(G(iω)) := G(iω). ∗
[
G−1(iω)

]T
,

where “.∗” denotes element wise multiplication. We can use RGA to determine which
input and output that are suitable to pair in a decentralized controller. Two rules of
thumb:
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u1 u2

y1 y2

Tank 1 Tank 2

Tank 3 Tank 4

Pump 1 Pump 2

Figure 1: The four-tank process

1. Find a pairing such that diagonal elements of RGA(G(iωc)) are as close to 1 as
possible, where ωc is the intended cross-over frequency.

2. Avoid pairings which correspond to negative elements in RGA(G(0)).

3 Exercises

In this computer exercise linear models of a four-tank process will be investigated. The
system is shown schematically in Figure 1. The input signals are the voltages of the
pumps, u1 and u2. The output signals that we want to control are the levels in the
lower tanks, y1 and y2. Connected to each pump there is a valve that divides the water
to the upper and lower tanks. A linear multivariable model with 2 inputs and 2 outputs
is given by Y (s) = G(s)U(s) where

Y (s) =
[
Y1(s)
Y2(s)

]
, U(s) =

[
U1(s)
U2(s)

]
and G(s) =

[
g11(s) g12(s)
g21(s) g22(s)

]

Depending on the settings of the valves we obtain different G(s). In this computer
exercise two different valve settings will be investigated: in the first, most of the water
will go directly to the lower tanks and G(s) is minimum phase; in the second, most of
the water go to the upper tanks and G(s) will be non-minimum phase.
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3.1 Poles, zeros and RGA

A linear state space model for the four-tank process is generated by the MATLAB func-
tions minphase and nonminphase. To put the minimum phase model in the variable
sysmp we write

sysmp = minphase

The following MATLAB functions can be used in this exercise. The poles of the system
sys are obtained with

pole(sys)

and its zeros with
tzero(sys)

The system should be given as a (minimal) state space description when these functions
are used. (Otherwise numerical problems can appear in MATLAB.)
The singular values for a system are calculated with sigma. To extract system matrices
and transfer functions the functions ssdata and tfdata are used, respectively. The
singular value decomposition are calculated using svd. To calculate step responses for
linear systems the function step can be used. The Bode diagram of a system is plotted
using bode. Note that dB scale is used. Use the MATLAB Help to learn more about
the functions.
The problems below should be solved both for the minimum phase and non-minimum
phase case. It is suitable to start with the former.

Exercise 3.1.1. Calculate the transfer matrix G(s). Investigate each element of the
matrix (Hint: G(1,1) extracts element (1,1)). Calculate the poles and zeros of the
elements.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.1.2. Calculate the poles and zeros of the multivariable system. Do these
imply any constraint on the achievable control performance?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.1.3. Investigate the largest and smallest singular values for the system at
different frequencies. Calculate the H∞ norm of the system.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.1.4. Investigate the RGA of the system at frequency 0. What conclusions
can we draw about the possibility of using decentralized control?
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Figure 2: Control.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.1.5. Plot the step response for one input at the time. Investigate the
outputs: is the system coupled? Is this in line with the properties of RGA?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now solve the above problems above for the non-minimum phase case.

Exercise 3.1.6. Describe the most important differences between the two cases and
discuss how it affects the control performance.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Decentralized control

We will now investigate control of the four-tank process as illustrated in Figure 2, where
both the process G(s) and the controller F (s) are 2× 2 matrices of transfer functions.
The simplest way to control a system is to use decentralized control. This means
that one input is paired with one output, which is controlled with a one-dimensional
controller. An example is depicted in Figure 3, where output y1 is controlled with
the input u1 through the controller f1(s). Similarly, the output y2 is controlled with
the input u2 through f2(s). Here y1 is paired with u1 and y2 is paired with u2. This
corresponds to Figure 2 with

F (s) =
[
f1(s) 0

0 f2(s)

]

The other way around, if y1 is paired with u2 and y2 is paired with u1, then F (s) is
given by

F (s) =
[

0 f1(s)
f2(s) 0

]
In the first case, the controllers f1(s) and f2(s) are designed using single-variable con-
trol design with the transfer functions between u1 and y1 and between u2 and y2. A
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Figure 3: Decentralized control.

procedure for one-dimensional control design was investigated in the computer exercise
on loop-shaping. Here we will design PI controllers

fj(s) = Kj

(
1 + 1

sTij

)
, j = 1, 2

such that the intended phase margin ϕm and cross-over frequency ωc are obtained. The
loop gain is given by L = GF . Therefore we wish to shape l11 and l22 in such a way
that given specifications are fulfilled.

Let us now investigate the case where y1 is to be controlled with u1. Denote the
intended phase margin and cross-over frequency by ϕm and ωc respectively. From l11
we see that K1 and Ti1 are given by the following equations:

|g11(iωc)f1(iωc)| = 1 (1)
arg g11(iωc) + arg f1(iωc)− ϕm = −π (2)

Note that Equation (2) is equivalent to

arg g11(iωc) + arctan(ωcTi1)− π/2− ϕm = −π

where arg g11(iωc) can be obtained from the Bode diagram of g11(s). This gives Ti1 .
Then we can draw the Bode diagram for the loop gain

l11(s) = g11(s)
(

1 + 1
sTi1

)

Equation (1) now gives
K1 = 1

|l11(iωc)|
where |l11(iωc)| is obtained from the Bode diagram of l11(s). Control design for other
input/output pairings is performed similarly. Apart from MATLAB functions already
mentioned, the following ones can help you: tf, zoom, append, inv and feedback.
The problems below should be solved both for the minimum phase and non-minimum
phase case. It is suitable to start with the former.
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Exercise 3.2.1. Design a decentralized controller by pairing inputs and outputs ac-
cording to the RGA analysis. The intended phase margin is ϕm = π/3 and the cross-
over frequency ωc is 0.1 rad/s for the minimum phase case and 0.02 rad/s for the
non-minimum phase case. (To make sure that the problem is correctly solved, investi-
gate the Bode diagram of L.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.2.2. Calculate the singular values of the sensitivity function

S(s) = (I +G(s)F (s))−1

and the complementary sensitivity function

T (s) = (I +G(s)F (s))−1G(s)F (s)

Is the design good with respect to sensitivity and robustness?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.2.3. Simulate the closed-loop system in Simulink by typing closedloop.
A Simulink window will appear where the block diagram is shown. Make sure that the
variables F and G in the MATLAB work-space contain the controller and the process
respectively. Go to the Simulation menu and click Start. On the screen the unit step
responses from the references to the outputs y1(t) (at t = 100) and y2(t) (at t = 500)
are plotted together with the inputs. The time instant of the steps can be modified by
clicking on the step blocks and changing the Step time. The total simulation time can
be modified by changing the Stop time in the menu Simulation/Parameters. Simulation
data is saved in the variable simout in the MATLAB workspace. Is the control good?
Are the outputs coupled?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now solve the above problems for the non-minimum phase case.

Exercise 3.2.4. Describe the most important differences between the two cases.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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