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1 Introduction

Loop-shaping is a classical procedure for control design. In the basic course it was
denoted lead lag design. Loop-shaping was introduced during world war II and it was
used to construct single variable circuits, such as amplifiers in feedback (Bode). This
knowledge has later been transferred to other areas of automatic control, and it has
been extended to multi-variable systems, i.e., systems with multiple input and output
signals.
The idea is to shape the open-loop gain with a controller in order to achieve intended
properties of the closed-loop system under feedback. In the 70’ies and 80’ies advanced
methods for loop-shaping based on optimization were developed. However, in this
computer exercise we will focus on basic classical loop-shaping. Frequency domain
descriptions are fundamental in control design!
We will here only consider SISO systems (single input single output), but the ideas are
also applicable to MIMO systems (multiple input multiple output).
Preparations: Chapters 7.1-7.4 in the course book (Ljung, Glad, “Control theory”).
It is also recommended to repeat Chapter 5.5 in the basic course book (Glad, Ljung,
“Reglerteknik-Grundläggande teori”).
Presentation: All problems in this exercise should be solved and be presented in a
written report. The date when the report should be handed in is indicated on the
course website. The report should be a full report, contain abstract and conclusions,
relevant figures and tables with captions and legends, etc. Focus on explaining what
you have done, and do not repeat theorems but cite them. Remember to write concise
(a report is not a novel), be specific in your writing (“the overshoot is 20%” compared
to “the overshoot is not so good”), and check your speling. The report will be graded
based on both the content and presentation. The exercise should be performed in pairs
of students.

2 Background

Consider the control system in Figure 1.

Σ F (s) G(s) Σ
y

Σ

r

d

n

u

−

Figure 1: K–controller, G–system, r–reference signal, u–control signal, d–disturbance
signal, y–output signal, n–measurement noise.
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The loop gain is given by L = GF , the sensitivity function S = (I + L)−1 and the
complementary sensitivity function T = (I+L)−1L. Remember that we have S+T = I.
The control error depends on the input signals as

e = r − y = Sr − Sd+ Tn.

Since we wish to have a small control error, we obtain the following conditions

e ≈ 0⇒

i) S ≈ 0 ⇒ T ≈ I ⇒ L large
ii) T ≈ 0 ⇒ S ≈ I ⇒ L small

We obviously have contradictive conditions! The case i) corresponds to reference track-
ing and disturbance attenuation while case ii) corresponds to noise attenuation (and
sensitivity to model errors, robustness). For example, if we wish to track low frequency
reference signals we have to design the loop gain to be large at low frequencies.
Apart from keeping the control error small, the control signal should not be too large
or vary too much. Since

u = F (r − y − n)

this condition implies that the control gain must not be designed too large, F small
⇒ L = GF small.
Stability is another important issue. The slope of the curve |L(iω)| is coupled to the
phase arg{L(iω)}. For example, L = a/sn has slope −n and phase −nπ/2. In order
to keep a reasonable stability margin, |L| must not have too large slope around the
cross-over frequency ωc. Typically, |L| is designed to have slope ≈ −1 at ωc.
Also note that the phase margin is coupled to control performance. For example we
have resonance peaks MS = maxω |S| and MT = maxω |T |

MT >
1
φM

; MS >
1
φM

where the phase margin φM is given in radians. For example, if we demand that the
resonance peaks should be smaller than 2, then the phase margin has to be larger than
30◦.
Such contradictive constraints give rise to different strategies to shaping the loop L
so that performance demands are met. They also provide limits of achievable control
performance.

3 Introduction to Control System Toolbox

In this computer exercise we will use MATLAB to shape the loop, just as we did in
the basic course. Most of the functions are in Control System Toolbox. Let us start
by defining some useful function. Recall that you get access to the MATLAB help be
typing help “function name".
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A transfer function
G(s) = s+ 2

s2 + 2s+ 3
is defined in MATLAB by typing

s=tf(’s’); G=(s+2)/(s2+2s+3)

The product of two transfer functions is obtained by

G12 = G1 * G2

For a system with 2 inputs and 2 outputs, the closed-loop transfer matrix is obtained
with

S=feedback(eye(2),G*F); T=feedback(G*F,eye(2))

For a SISO system this can be written

S=1/(1+G*F); T=G*F/(1+G*F)

For numerical reasons it is very important to use the function minreal, for example
minreal(T). This creates an equivalent system where all canceling pole/zero pair or
non minimal state dynamics are eliminated.
The bode diagram for G is plotted by typing

bode(G) or bode(G,{wmin,wmax})

Amplitude and phase at a given frequency are obtained by

[m,p]=bode(G,w)

Phase margin, amplitude margin and corresponding frequencies are obtained by

[Gm,Pm,wp,wc]=margin(G*F)

To simulate a step response in the control signal, use the function

step(G) or step(G,tfinal)

In the same way, to simulate a step response in the reference signal, we type

step(T)

4 Exercises

4.1 Basics

Consider a system which can be modeled by the transfer function

G(s) = 3(−s+ 1)
(5s+ 1)(10s+ 1) .
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Exercise 4.1.1. Use the procedure introduced in the basic course to construct a lead-
lag controller which eliminates the static control error for a step response in the refer-
ence signal.

F (s) = K
τDs+ 1
βτDs+ 1︸ ︷︷ ︸

Lead

τIs+ 1
τIs+ γ︸ ︷︷ ︸

Lag

The phase margin should be 30◦ at the cross-over frequency ωc = 0.4 rad/s.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 4.1.2. Determine the bandwidth of the closed-loop system and the resonance
peak MT . Also, determine the rise time and the overshoot for step changes in the
reference when the controller designed in 4.1.1. is used.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 4.1.3. Modify the controller in 4.1.1. such that the phase margin increases
to 50◦ while the cross-over frequency is unchanged. For the corresponding closed-loop
system, determine the bandwidth and resonance peak. Also, determine the rise time
and the overshoot of the step response.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Disturbance attenuation

Now we will construct a controller which both tracks the reference signal and attenuates
disturbances. The block diagram of the control system is given in Figure 2. We assume
that the signals have been scaled such that |d| < 1, |u| < 1 and |e| < 1 where e = r−y.
The exercise is about designing Fr and Fy in Figure 2 such that:

• The rise time for a step change in the reference signal less than 0.2 s and the
overshoot is less than 10%.
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• For a step in the disturbance, we have |y(t)| ≤ 1 ∀t and |y(t)| ≤ 0.1 for t > 0.5 s.

• Since the signals are scaled the control signal obeys |u(t)| ≤ 1 ∀t.

Fr(s) Σ Fy(s) G(s) Σ

Gd(s)

yr u

d

−

Figure 2: Fr–prefilter, Fy–feedback controller, G–system, Gd–disturbance dynamics,
r–reference signal, u–control signal, d–disturbance signal, y–measurement signal.

The transfer functions have been estimated to

G(s) = 20
(s+ 1)(( s

20)2 + s
20 + 1)

Gd(s) = 10
s+ 1

Exercise 4.2.1. For which frequencies is control action needed? Control is needed
at least at frequencies where |Gd(jω)| > 1 in order for disturbances to be attenuated.
Therefore the cross-over frequency must be large enough. First, try to design Fy such
that L(s) ≈ ωc/s and plot the closed-loop transfer function from d to y and the
corresponding step response. (A simple way to find L = ωc/s is to let Fy = G−1ωc/s.
However, this controller is not proper. A procedure to fix this is to “add” a number of
poles in the controller such that it becomes proper. How should these poles be chosen?)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A loop gain of slope -1 at all frequencies gives in our case poor disturbance attenuation.
To understand the reason for this, note that the output is given by

y = SGdd = (1 + L)−1Gdd.

Provided the signals have been scaled we want |(1 + L)−1Gd| < 1 for all ω. For
frequencies where |Gd| > 1 this approximately implies |L| > |Gd| or |Fy| > |G−1Gd|.
Most often we also want integral action and as a starting point we can choose

Fy = s+ ωI
s

G−1Gd, (1)
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where ωI determines the frequency range of efficient integral action. We see that if
Gd ≈ 1, the controller should contain the inverse of the system. On the other hand if
Gd 6= 1 the controller should be designed in some other fashion. Especially, we observe
that if the disturbance is on the input side to the system we have Gd = G and then Fy
should be chosen as a PI controller according to (1).
Note that the controller (1) cannot be used if it is not proper, causal and stable. To
ensure these properties, approximations of (1) may be necessary.

Exercise 4.2.2. Let us now reconstruct Fy according to the instructions above. We will
start with the disturbance attenuation. In a second step, adjustments can be made on
Fr to obtain the desired reference tracking properties. Start by choosing Fy according
to (1). Try different approximations of the product G−1(s)Gd(s) and choose ωI large
enough so that step disturbances are attenuated according to the specifications.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 4.2.3. To fulfill the reference tracking specifications, we can combine lead
lag control and prefiltering of the reference signal. First, try to add lead action to Fy
to reduce the overshoot. Then it can be necessary to add prefilter action to fulfill all
specifications. Note that Fr should be as simple as possible (why?). Also, remember
to check the size of the control signal (u = FyFrSr − FyGdSd)! Typically a low pass
filter is chosen, for example

Fr = 1
1 + τs

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 4.2.4. Finally, check that all specifications are fulfilled. Plot the sensitivity
and complementary sensitivity functions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1 Introduction

In this computer exercise we will investigate properties of multivariable systems. The
application is a model of a four-tank-process. In particular we will consider pairings
between different input and output signals and non-minimum phase dynamics. The
pairings are analyzed using RGA and we will investigate their influence in decentralized
PI control.
Preparations: Chapters 3.3, 3.5, 6.5, 7.3-7.5, 7.7 and 8.3 in Glad, T. and Ljung, L.:
“Control theory—multivariable and nonlinear methods”.
Presentation: All problems in this exercise should be solved, but only the tasks on
the report form should be handed in. The report form and the date when it should be
handed in can be found on the course website. The exercise should be performed in
pairs of students.

2 Theoretical overview

This section contains a short overview of basic theory for multivariable systems. The
content is based on the course book.

2.1 Poles and zeros

As for SISO systems we can define poles and zeros for a linear MIMO system with
transfer matrix G(s).
The poles of G(s) are defined as the eigenvalues of the system matrix A in a minimal
state space realization of the system and they are calculated as the roots of the pole
polynomial, det(sI −A). The pole polynomial can also be obtained by calculating the
least common denominator of all sub-determinants of G(s).
It is more difficult to extend the definition of zeros from the SISO case to the MIMO
case. The most common definition of a zero of the system is a value of s where the
transfer matrix G(s) looses rank. For the special case of square transfer matrices, the
zeros are given by the roots of detG(s) = 0.

2.2 Singular values, directions and H∞ norms

The singular values σi of a matrix A are defined as σi =
√
λi, where λi are the eigen-

values of the matrix A∗A. The largest singular value of A is denoted σ(A), and the
smallest as σ(A). If y = Ax, it follows from the singular value definition that

σ(A) ≤ |y|
|x|
≤ σ(A)

where the relation between the norm of y and the norm of x, |y|/|x|, can be interpreted
as the gain of the matrix A. If x is parallel with the eigenvector corresponding to

1



the largest eigenvalue of ATA then we have |y| = σ(A)|x|, and if x is parallel to the
eigenvector corresponding to the smallest then we obtain |y| = σ(A)|x|. This way we
can define directions corresponding to the largest and smallest singular value for A
respectively.
For a linear stable multivariable system with transfer matrix G(s) we have

Y (iω) = G(iω)U(iω)

where Y (s) and U(s) are the Laplace transforms of the system’s output and input
signals. According to the definition of singular values we therefore have

σ(G(iω)) ≤ |Y (iω)|
|U(iω)| ≤ σ(G(iω))

Introducing
|G(iω)| := σ(G(iω))

it holds
|Y (iω)| ≤ |G(iω)||U(iω)|.

This notation is analogous to the SISO case where the norm is interpreted as the
absolute value of G(iω), and the inequality above turns to an equality.
To understand the inequalities in the MIMO case we can choose the input parallel to
the direction corresponding to the largest or smallest singular values of G(iω). The
directions decide the “mix” of the input signal components that results in the largest
and smallest gain of the system respectively.
The largest gain of the multivariable system G(iω) is denoted ‖G‖∞, which is given by

‖G‖∞ = max
ω
|G(iω)|.

‖G‖∞ is called the H∞ norm of G. For output signal y(t) and input signal u(t) it holds

‖y‖ ≤ ‖G‖∞‖u‖.

Therefore the H∞ norm can be interpreted as the time domain gain of the system. It
holds

sup
u

‖y‖
‖u‖

= ‖G‖∞,

which can be seen as the definition of the H∞ norm for G.

2.3 Decentralized control

A fundamental problem in multivariable control is the pairings between the inputs
and outputs. This means that if one input changes there is generally a change in all
outputs. A measure of the strength of the pairings in a multivariable system, G(s), is
given by the Relative Gain Array, RGA of the transfer matrix G. It is defined by

RGA(G(iω)) := G(iω). ∗
[
G−1(iω)

]T
,

where “.∗” denotes element wise multiplication. We can use RGA to determine which
input and output that are suitable to pair in a decentralized controller. Two rules of
thumb:
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u1 u2

y1 y2

Tank 1 Tank 2

Tank 3 Tank 4

Pump 1 Pump 2

Figure 3: The four-tank process

1. Find a pairing such that diagonal elements of RGA(G(iωc)) are as close to 1 as
possible, where ωc is the intended cross-over frequency.

2. Avoid pairings which correspond to negative elements in RGA(G(0)).

3 Exercises

In this computer exercise linear models of a four-tank process will be investigated. The
system is shown schematically in Figure 3. The input signals are the voltages of the
pumps, u1 and u2. The output signals that we want to control are the levels in the
lower tanks, y1 and y2. Connected to each pump there is a valve that divides the water
to the upper and lower tanks. A linear multivariable model with 2 inputs and 2 outputs
is given by Y (s) = G(s)U(s) where

Y (s) =
[
Y1(s)
Y2(s)

]
, U(s) =

[
U1(s)
U2(s)

]
and G(s) =

[
g11(s) g12(s)
g21(s) g22(s)

]

Depending on the settings of the valves we obtain different G(s). In this computer
exercise two different valve settings will be investigated: in the first, most of the water
will go directly to the lower tanks and G(s) is minimum phase; in the second, most of
the water go to the upper tanks and G(s) will be non-minimum phase.

3



3.1 Poles, zeros and RGA

A linear state space model for the four-tank process is generated by the MATLAB func-
tions minphase and nonminphase. To put the minimum phase model in the variable
sysmp we write

sysmp = minphase

The following MATLAB functions can be used in this exercise. The poles of the system
sys are obtained with

pole(sys)

and its zeros with
tzero(sys)

The system should be given as a (minimal) state space description when these functions
are used. (Otherwise numerical problems can appear in MATLAB.)
The singular values for a system are calculated with sigma. To extract system matrices
and transfer functions the functions ssdata and tfdata are used, respectively. The
singular value decomposition are calculated using svd. To calculate step responses for
linear systems the function step can be used. The Bode diagram of a system is plotted
using bode. Note that dB scale is used. Use the MATLAB Help to learn more about
the functions.
The problems below should be solved both for the minimum phase and non-minimum
phase case. It is suitable to start with the former.

Exercise 3.1.1. Calculate the transfer matrix G(s). Investigate each element of the
matrix (Hint: G(1,1) extracts element (1,1)). Calculate the poles and zeros of the
elements.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.1.2. Calculate the poles and zeros of the multivariable system. Do these
imply any constraint on the achievable control performance?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.1.3. Investigate the largest and smallest singular values for the system at
different frequencies. Calculate the H∞ norm of the system.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.1.4. Investigate the RGA of the system at frequency 0. What conclusions
can we draw about the possibility of using decentralized control?

4



Σ F (s) G(s)
r e u y

−

Figure 4: Control.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.1.5. Plot the step response for one input at the time. Investigate the
outputs: is the system coupled? Is this in line with the properties of RGA?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now solve the above problems above for the non-minimum phase case.

Exercise 3.1.6. Describe the most important differences between the two cases and
discuss how it affects the control performance.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Decentralized control

We will now investigate control of the four-tank process as illustrated in Figure 4, where
both the process G(s) and the controller F (s) are 2× 2 matrices of transfer functions.
The simplest way to control a system is to use decentralized control. This means
that one input is paired with one output, which is controlled with a one-dimensional
controller. An example is depicted in Figure 5, where output y1 is controlled with
the input u1 through the controller f1(s). Similarly, the output y2 is controlled with
the input u2 through f2(s). Here y1 is paired with u1 and y2 is paired with u2. This
corresponds to Figure 4 with

F (s) =
[
f1(s) 0

0 f2(s)

]

The other way around, if y1 is paired with u2 and y2 is paired with u1, then F (s) is
given by

F (s) =
[

0 f1(s)
f2(s) 0

]
In the first case, the controllers f1(s) and f2(s) are designed using single-variable con-
trol design with the transfer functions between u1 and y1 and between u2 and y2. A
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Σ f1(s)

Σ f2(s)

G(s)

r1

r2

u1

u2

y1

y2

−

−

Figure 5: Decentralized control.

procedure for one-dimensional control design was investigated in the computer exercise
on loop-shaping. Here we will design PI controllers

fj(s) = Kj

(
1 + 1

sTij

)
, j = 1, 2

such that the intended phase margin ϕm and cross-over frequency ωc are obtained. The
loop gain is given by L = GF . Therefore we wish to shape l11 and l22 in such a way
that given specifications are fulfilled.

Let us now investigate the case where y1 is to be controlled with u1. Denote the
intended phase margin and cross-over frequency by ϕm and ωc respectively. From l11
we see that K1 and Ti1 are given by the following equations:

|g11(iωc)f1(iωc)| = 1 (2)
arg g11(iωc) + arg f1(iωc)− ϕm = −π (3)

Note that Equation (3) is equivalent to

arg g11(iωc) + arctan(ωcTi1)− π/2− ϕm = −π

where arg g11(iωc) can be obtained from the Bode diagram of g11(s). This gives Ti1 .
Then we can draw the Bode diagram for the loop gain

l11(s) = g11(s)
(

1 + 1
sTi1

)

Equation (2) now gives
K1 = 1

|l11(iωc)|
where |l11(iωc)| is obtained from the Bode diagram of l11(s). Control design for other
input/output pairings is performed similarly. Apart from MATLAB functions already
mentioned, the following ones can help you: tf, zoom, append, inv and feedback.
The problems below should be solved both for the minimum phase and non-minimum
phase case. It is suitable to start with the former.
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Exercise 3.2.1. Design a decentralized controller by pairing inputs and outputs ac-
cording to the RGA analysis. The intended phase margin is ϕm = π/3 and the cross-
over frequency ωc is 0.1 rad/s for the minimum phase case and 0.02 rad/s for the
non-minimum phase case. (To make sure that the problem is correctly solved, investi-
gate the Bode diagram of L.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.2.2. Calculate the singular values of the sensitivity function

S(s) = (I +G(s)F (s))−1

and the complementary sensitivity function

T (s) = (I +G(s)F (s))−1G(s)F (s)

Is the design good with respect to sensitivity and robustness?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.2.3. Simulate the closed-loop system in Simulink by typing closedloop.
A Simulink window will appear where the block diagram is shown. Make sure that the
variables F and G in the MATLAB work-space contain the controller and the process
respectively. Go to the Simulation menu and click Start. On the screen the unit step
responses from the references to the outputs y1(t) (at t = 100) and y2(t) (at t = 500)
are plotted together with the inputs. The time instant of the steps can be modified by
clicking on the step blocks and changing the Step time. The total simulation time can
be modified by changing the Stop time in the menu Simulation/Parameters. Simulation
data is saved in the variable simout in the MATLAB workspace. Is the control good?
Are the outputs coupled?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now solve the above problems for the non-minimum phase case.

Exercise 3.2.4. Describe the most important differences between the two cases.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1 Introduction

In H∞ control design the sensitivity and complementary sensitivity function are shaped
to meet certain desired specifications. The main goal of this lab is to get a feeling for
how H∞ control design can be used to obtain desired specifications on sensitivity and
robustness.
Preparations: Recollect the following topics from the basic control course:

• Sensitivity and complementary sensitivity functions.
• Robustness and model errors.
• Poles and zeros effect on the system dynamics and the Bode diagram.

Read this document and answer the preparation tasks, 2.1.1, 2.2.1 and 2.3.1 before the
exercise.
Presentation: All problems in this exercise should be solved, but only the tasks on
the report form should be handed in. The report form and the date when it should be
handed in can be found on the course website. The exercise should be performed in
pairs of students.

2 Background

This section will begin with a brief summary of some important basic theory followed
by more specific theory for the H∞ design method.

Σ F (s) G(s) Σ
r e u y

−

w

Figure 6: Block diagram of the feedback system used in this lab.

The system used in the entire lab has the structure depicted in fig. 6. The signals
indicated in the figure are:

r: Reference value
e: Control error
u: Control signal
w: Disturbance on the output
y: Output

1



2.1 Sensitivity function and reduction of disturbances

The sensitivity function, denoted S, is the transfer function from the disturbance to
the output, see eq. (4). Note that the equation only describes the relation between the
disturbance and the output. The reference is therefore assumed to be zero.

y = Sw, S = (1 +GF )−1 (4)

By making the amplification of the sensitivity function small, the effects of disturbances
on the output can be reduced. As this lab will show it is not possible to make it arbitrary
small for all frequencies. This can easily be realized by looking at the amplification of
the controller required to make the sensitivity very small.

2.1.1 Preparation task 1

Use the block diagram in fig. 6 to show that the transfer function from the disturbance
(w) to the output (y) satisfies eq. (4).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Complementary sensitivity and robustness

The complementary sensitivity function T , given by

T = (1 +GF )−1GF, (5)

can be used to prove robustness to model errors. For that a new system with model
uncertainty ∆G is introduced. The new system is depicted in fig. 7.

Σ F (s) G(s)

∆G(s)

Σ Σ
r e u

ξ x

y

−

w

Figure 7: Block diagram of the feedback system with model error

The system in fig. 7 can be rewritten as the system depicted in fig. 8. With the small
gain theorem, see the course book [1] or [2], closed loop stability can be guaranteed if
∆G and T both are stable and condition (6) is satisfied.

|T (iω)| < 1
|∆G(iω)| , ∀ω (6)
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One important remark about the above result is that the small gain theorem is con-
servative. The condition on T is therefore sufficient but not necessary for stability.

∆G(s)

−T (s) Σ

ξ x

w

Figure 8: Block diagram of the feedback system with model error on the form used in
the small gain theorem

2.2.1 Preparation task 2

Show that the systems in figs. 7 and 8 are equivalent if the reference signal is zero.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 H∞ control design

In H∞ control design the three functions S, T and Gwu are shaped to meet desired
performance. The first two have already been discussed. Here Gwu denotes the transfer
function from the disturbance to the control signal, see eq. (7) (where it is assumed
r = 0).

u = Guw, Gwu = −(1 + FG)−1F = −FS (7)

It is desirable to make the magnitude of S, T and Gwu small. That is unfortunately
not possible because they are related to each other. To deal with that, the weights
(transfer functions)WS , WT andWU are introduced. They decide how much emphasis
to put on minimizing each closed loop transfer function.
After choosing the weights the following problem is solved:
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Find F such that∥∥∥∥∥∥∥
 WSS
WTT
WUFS


∥∥∥∥∥∥∥
∞

≤ γ

with the smallest value of γ possible.

This is an approximate, but computationally convenient, way of expressing the desire
that all the individual transfer functionsWSS, WTT andWUFS should have H∞-norm
less than γ.
The requirement that the individual transfer functions should have H∞-norm less than
γ can be rewritten as 

|S(iω)| ≤ γ|W−1
S (iω)|, ∀ω

|T (iω)| ≤ γ|W−1
T (iω)|, ∀ω

|FS(iω)| ≤ γ|W−1
U (iω)|, ∀ω

(8)

In this way, we can see the weight functions as a means to define “forbidden regions”
for the frequency responses of the individual transfer functions.
To compute the controller that gives the smallest value of γ is far from trivial, especially
for higher order systems and weights. It is therefore not done by hand in this lab. The
computations are instead done numerically in the design tool.

2.3.1 Preparation task 3

Use the block diagram in fig. 6 to show that the transfer function from the disturbance
(w) to the control signal (u) satisfies eq. (7).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Software tool

This lab is run in MATLAB. The files needed can be found on the course homepage.
A graphical design tool will be used to design the weights and compute the resulting
controller. There is also a Simulink model used for simulations. How to use the design
tool and do the simulations will be described in this section.

3.1 H∞ graphical design tool

Before the design tool can be opened a transfer function for the system must be defined.
The model has to be strictly stable and proper, which means that is has at least as
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many poles as zeros and all poles are in the left half plane. An example sequence of
how the tool is started can be seen below.

s=tf(’s’);
G=1e4*(s+2)/(s+3)/(s+100)^2;
Hinf(G);

The tool should now open and look like in fig. 9.
There are three Bode plots, (1a), (1b), (1c). They show S, T , Gwu and the inverse of
their respective weights.
To the right of each Bode there are lists of poles and zeros and some buttons, (4) in
fig. 9. Notice that the poles corresponds to zeros in the inverse of the weight that is
plotted and the opposite for the zeros.
The weights can be changed in two ways. One is to add and remove poles or zeros with
the corresponding buttons. The other is to open a graphical editor for the poles and
zero. It is done by clicking the ‘Edit Pole-Zero diagram” button. A new window, seen
in fig. 10, will open. In the new window different tools can be chosen from the toolbar,
(1) in fig. 10.
The tools from left to right are:

Add real pole: Add real pole by clicking in the diagram.
Add complex pole pair: Add complex pole pair by clicking in the diagram.
Add real zero: Add real zero by clicking in the diagram.
Add complex zero pair: Add complex zero pair by clicking in the diagram.
Remove: Removes pole or zero by clicking on it.
Move: Move pole or zero by clicking and dragging.

The weights are on the form (9).

W (s) = k
(s− z(1))(s− z(2)) . . . (s− z(m))
(s− p(1))(s− p(2)) . . . (s− p(n)) (9)

To edit the constant k, just type the new value in the gain input field (3) in fig. 9 and
press enter.
The weights on T and Gwu can be disabled. Just press the disable button (5) in fig. 9.
It can be enabled again by pressing the enable button that replaces the disable button.
The magnitude scale is automatically fitted to the weight but the frequency scale has
to be set by the user. There are two ways of doing it. One is to enter a maximum and
minimum value in the fields (2a) and (2b) in fig. 9 and press enter. The other option
is to use the “auto-set frequency” option in the plots menu (6) in fig. 9
To compute the controller from the weights simply use the “compute controller” option
in the controller menu, (6) in fig. 9. The controller will then be computed and the
plots updated. Some information about the controller can be displayed in MATLAB’s
command window. The controller can then finally be exported to the workspace with
the “export controller” option in the controller menu (6) in fig. 9. It will be saved as F
in workspace. If there already exists a variable with that name it will be overwritten.

5



1a

1b

1c

2a 2b 3

4

5

6

Figure 9: The H∞ graphical design tool

3.2 Simulations

The Simulink model named servo1.mdl is used to simulate the system in fig. 6. A step
is used as reference and disturbances can be added as band-limited white noise and a
sinusoid. To run the simulation the short macro command, found on the homepage,
can be used. In the beginning of the file macro.m there are some parameters that can
be changed to customize the simulation. The parameters are described in the m-file.
To run the macro, the controller and system must first be saved as transfer functions
named Fsim and Gsim in workspace. The macro runs the simulation and plots the
results in a new figure.
Below is an example of a sequence that simulates the system. The system and controller
are assumed to be defined as transfer functions in workspace with the names F and G.
Fsim=F; Gsim=G ;
% Edit parameters in macro.m
macro
Now the simulation should start and plot the results when ready. If the simulation
takes very long time it can be stopped by pressing Ctrl-C in the MATLAB command
window.
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Figure 10: The pole-zero editor
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Figure 11: Bode diagram of the system in eq. (10)

4 Exercises

The system to control in this lab is an electrical device powered by the 50 Hz (NB:
100π rad/s) power grid. A proposed model of the system is given by the transfer
function:

G(s) = 104 (s+ 2)
(s+ 3)(s+ 100)2 (10)

The closed loop system is considered to be fast enough, when it comes to following the
reference, without a controller, but not the suppression of disturbances. A controller
will therefore be designed focusing on the disturbances.

4.1 Suppression of disturbances

i. The aim is to damp the 50 Hz disturbances. Propose a suitable weight, WS , by
drawing it in the empty Bode diagram in fig. 12. Also draw the expected resulting
sensitivity function. Keep in mind that the sensitivity function can not be small
for all frequencies.

ii. Now try to design the weight in the software. In this part only the sensitivity
is considered. The weights on T and Gwu can therefore be disabled. When the
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Figure 12: Draw WS and S here.

sensitivity function is satisfactory, export the controller to workspace and run the
simulation with a 50 Hz sinusoidal disturbance as described in section 3.2. Use the
parameters in table 1. Fill out table 2 with the results from the simulation.
Hint: Placing poles in s = −ε ± i

√
ω2 − ε2, where ε is small, gives a peak at ω

rad/s

Parameter Value
u_max ∞
sin_dist_freq 100π
sin_dist_amp 1
white_noise_amp 0
step_size 0
sim_time 10

Table 1: Parameters to use in macro.m for simulation

Signal Amplitude
disturbance (w)
output (y)
control signal (u)

Table 2: Results from simulation in exercise 4.1 ii.

How much is the disturbance damped on the output? . . . . . . . . . . . . . . . . . . . . . . . . . .
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(The rate between the disturbance amplitude and the output oscillations )

Approximately what amplification is required for a P-controller to get the same
rate and what are the advantages/disadvantages of such a controller?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hint: If |FG| � 1, |S| ≈ |FG| − 1.

4.2 Robustness

Unfortunately the model (10) is not accurate. It was obtained by sending sinusoids,
with different frequency, into the system and measure the output amplitude. By ig-
noring the phase-shift some important dynamics was not detected. The true system is
given by eq. (11).

Go(s) = G(s)(1 + ∆G(s)) = 104 (s+ 2)
(s+ 3)(s+ 100)2 ·

(s− 1)
(s+ 2) (11)

i. What influences will this error have on the system behavior, and will they be a
limiting factor on achievable control performance?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii. Simulate the system with the controller designed in the previous exercise and the
system (11). Run the simulation with the same parameters as before.

(The simulation time might need to be increased to see the results)

Comment on the results from the simulations:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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iii. What is the condition on T required to guarantee stability for the new system,
using the small gain theorem?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Is the condition fulfilled? (Look at the Bode diagram in the graphical design tool.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iv. Use the software to design a new controller that suppresses 50 Hz disturbances but
is stable with Go. Keep the WS used earlier but enable the weight on T . Then
try to find a weight on T that makes the closed loop system stable and still has
good suppression of the disturbance. Export the controller to workspace and run
the simulation.
Remark: The controller should be designed for G in eq. (10) but simulated with Go

in eq. (11).
Compare the results to table 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3 The use of control signal

Enable the weight on Gwu and try to reduce the control signal. Try to reduce the
amplitude to half of the one used in exercise 4.2 iv. How is the amplitude of the output
affected?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hint: Remember that the tool is solving optimization problem (8).
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1 Introduction

The purpose of this computer exercise is to investigate different procedures for mul-
tivarible control design. The process is the same as in the computer exercise on mul-
tivariable systems, i.e. the four-tank process. First, we will investigate static and
dynamic decoupling. The control performance will be evaluated. Then, the design will
be robustified using a method proposed by Glover and McFarlane.
Preparations: Chapters 8.3 and 10.5 in Glad, T. and Ljung, L.: “Control theory—
multivariable and nonlinear methods”.
Presentation: All problems in this exercise should be solved, but only the tasks on
the report form should be handed in. The report form and the date when it should be
handed in can be found on the course website. The exercise should be performed in
pairs of students.

2 Theoretical overview

This section provides the theory that you will need to solve the problems. It is based
on the course book.

2.1 Decentralized control and decoupling

A fundamental problem in multivariable control is that the input and output signals
are coupled. This means that if one input is changed then, in general, all outputs are
affected. A measure of the strength of the coupling in a multivariable system (G(s))
is given by the Relative Gain Array, RGA of the transfer matrix G, defined as:

RGA(G(iω)) := G(iω). ∗
[
G−1(iω)

]T
,

where “.∗” denotes element wise multiplication. In decentralized control the RGA can
help us to determine which inputs and outputs that are suitable to pair. Two rules of
thumb:

1. Find a pairing such that the diagonal elements in RGA(G(iωc)) are as close to 1
as possible, where ωc is the intended cross-over frequency.

2. Avoid pairings that correspond to negative elements in RGA(G(0)).

If it is not possible to find a suitable pairing of inputs and outputs, one can try to
make a better system using decoupling. Consider the following example: one output is
a function of the difference of two inputs, while another output depends on the sum of
these two inputs. In this case, it is suitable to introduce two new inputs which denote
the sum and the difference respectively of the two original inputs. This is the main
idea in decoupling. Generally, decoupling is performed in the following way. Introduce
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the new variables ỹ = W2y and ũ = W−1
1 u, so that the transfer function from ũ to ỹ

becomes
G̃(s) := W2(s)G(s)W1(s),

where we try to design G̃ as diagonal as possible. Typically, we letW2 = I. The idea is
to find a G̃ which is more suitable for decentralized control than the original system G.
In general, a completely diagonal G̃ is not realizable. However, we can try to design
G̃ to be as decoupled as possible in a certain frequency range with the dynamical
transfer matrices W1(s) and W2(s). Alternatively, we can decouple the system for one
frequency, e.g. ω = 0 or ω = ωc, with constant matrices W1 and W2.

2.2 Glover-McFarlane robust loop-shaping

The decentralized control can be robustified using the method proposed by Glover and
McFarlane. It is described in Chapter 10.5 in the course book. A summary of the
design procedure, step by step, is given below.

1. Start by pairing the input and output signals in such a way that the system
becomes as diagonal as possible. A useful mathematical tool is RGA (relative
gain array).

2. Design an initial controller using pre-compensation W1 and post-compensation
W2. To start with, we can typically choose W2 = I and W1 = WdcFdiag where
Wdc decouples the system at a suitable frequency (i.e. ω = 0 or the intended ωc)
and Fdiag(s) is a diagonal lead-lag controller designed using classical loop-shaping
(c.f. computer exercises 1 and 2).

3. Robust stabilization. Design the Glover-McFarlane controller Fr for the system
Gs = W2GW1. If γ > 4 , redesign W1.

4. The final controller is F (s) = W1FrW2.

3 Exercises

In this computer exercise the four-tank process will be investigated. Please recall the
MATLAB functions introduced in the exercise on multivariable systems.
NB: numerical problems in MATLAB can occur if you work with systems as transfer
functions (tf objects in MATLAB). It is therefore important that you instead work
with state space representations (ss). When performing multiplication and division
of systems, it is highly recommended to use the function minreal, which creates an
equivalent system where all canceling pole-zero pairs or non minimal state dynamics
are eliminated. Numerical properties can depend on the MATLAB version that you
use.
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3.1 Static decoupling

Static decoupling is obtained by choosingW2(s) = I andW1(s) = G−1(0). This implies
that G̃(s) = G(s)G−1(0) is decoupled at s = 0.
The problems below should be solved both for the minimum phase and non-minimum
phase case. It is suitable to start with the former.

Exercise 3.1.1. Calculate the static decoupling for the system and plot the Bode
diagrams of G̃(s) for verification.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.1.2. Design a diagonal controller F̃ (s) for G̃(s). Design the controllers
f̃i(s) as PI controllers. The intended phase margin is ϕm = π/3. The intended cross-
over frequency ωc is 0.1 rad/s for the minimum phase case and 0.02 rad/s for the
non-minimum phase case.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The controller is now given by

F (s) = G−1(0)F̃ (s)

Exercise 3.1.3. Calculate the singular values of the sensitivity function

S(s) = (I +G(s)F (s))−1

and the complementary sensitivity function

T (s) = (I +G(s)F (s))−1G(s)F (s)

Is the design good with respect to sensitivity and robustness?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.1.4. Simulate the closed-loop system in Simulink by typing closedloop.
A Simulink window will appear where the block diagram is shown. Make sure that the
variables F and G in the MATLAB work-space contain the controller and the process
respectively. Go to the Simulation meny and click Start. On the screen the unit step
responses from the references to the outputs y1(t) (at t = 100) and y2(t) (at t = 500)
are plotted together with the inputs. The time instant of the steps can be modified by
clicking on the step blocks and changing the Step time. The total simulation time can
be modified by changing the Stop time in the menu Simulation/Parameters. Simulation

3



data is saved in the variable simout in the MATLAB workspace. Is the control good?
Are the outputs coupled?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now perform the exercises above for the non-minimum phase case.

Exercise 3.1.5. Describe the most important differences between the two cases.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Dynamical decoupling

Dynamical decoupling can be obtained for example by choosing W2(s) = I and W1(s)
in such a way that G̃(s) = G(s)W1(s) is a diagonal matrix. The conditions for G̃(s) to
be diagonal are the following:

g11(s)w12(s) + g12(s)w22(s) = 0
g21(s)w11(s) + g22(s)w21(s) = 0

where wij(s) denote the elements of the matrix W1(s). Since there are four unknowns
and and two equations we have additional degrees of freedom. A suitable procedure is
to let the diagonal elements of W (s) be equal to one if the RGA of G(s) indicates the
pairings (u1, y1) and (u2, y2). Accordingly, for other pairings it is suitable to set the
other two elements equal to one. For the case w11(s) = w22(s) = 1, we have

w12(s) = −g12(s)/g11(s)
w21(s) = −g21(s)/g22(s)

Divisions with ss object is not possible in MATLAB. After the divisions have been
performed, we can return to state space descriptions using the function ss. (Notice that
analytically, G̃(s) is diagonal. However, numerically we can have off diagonal elements
of size 10−16, which can cause problems if we work with tf objects in MATLAB).
If, by some reason, the static gain of G̃(s) happens to be negative, this can be modified
by changing signs of W1(s). If W1(s) becomes non-proper (for example if it contains
derivations), we can still realize the dynamical decoupling for frequencies up to approx-
imately 10 times the intended cross-over frequency ωc using the following modification

W1(s)↔ W1(s) 10ωc
s+ 10ωc

The problems below should be solved both for the minimum phase and non-minimum
phase case. It is suitable to start with the former.

4



Exercise 3.2.1. Calculate a dynamical decoupling W (s) for the system and plot the
Bode diagrams of G̃(s) for verification.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.2.2. Design a controller F̃ (s) for G̃(s). Design the controllers f̃i(s) as PI
controllers so that we have phase margin ϕm = π/3. The intended cross-over frequency
ωc is 0.1 rad/s for the minimum phase case and 0.02 rad/s for the non-minimum phase
case.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The controller is now given by

F (s) = W1(s)F̃ (s)

Exercise 3.2.3. Calculate the singular values of the sensitivity function

S(s) = (I +G(s)F (s))−1

and the complementary sensitivity function

T (s) = (I +G(s)F (s))−1G(s)F (s)

Is the design good with respect to sensitivity and robustness?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.2.4. Simulate the closed-loop system in Simulink. Is the control good?
Are the outputs coupled?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now solve the above problems for the non-minimum phase case.

Exercise 3.2.5. Describe the most important differences between the two cases.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Exercise 3.2.6. Which type of decoupling is the best for the minimum phase sys-
tem and the non-minimum phase system respectively? What are the advantages and
disadvantages of the static and dynamical decoupled designs?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Glover-McFarlane robust loop-shaping

In the above exercises we combined static and dynamical decoupling with decentralized
PI control. In this exercise we will continue with the design that showed to be best for
each of the two cases. Alternatively, we could start all over as described above in 2.2,
but we will not do that. The reason is that the Glover-McFarlane method works well
for reasonably well-tuned nominal controllers.
Therefore assume that we have a nominal loop gain

L0(s) = G(s)W1(s)F̃ (s)

obtained in the exercises above. The Glover-McFarlane method adds a link Fr(s) to
this loop gain so that the final controller becomes

F (s) = W1(s)F̃ (s)Fr(s)

In MATLAB this link is calculated with the function

[Fr,gam] = rloop(L0,alpha)

A suitable choice for alpha is 1.1.
The problems below should be solved both for the minimum phase and non-minimum
phase case. It is suitable to start with the former.

Exercise 3.3.1. Calculate L0 corresponding to the best previous design procedure and
plot the Bode diagrams to verify that L0 has the intended cross-over frequency ωc and
that it is reasonably decoupled at ωc. For the minimum phase case, ωc is 0.1 rad/s and
for the non-minimum phase case it is 0.02 rad/s.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.3.2. Calculate the Glover-McFarlane controller for L0. Are you satisfied
with the γ that you have obtained?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The controller is now given by

F (s) = W1(s)F̃ (s)Fr(s)

Exercise 3.3.3. Calculate the singular values of the sensitivity function

S(s) = (I +G(s)F (s))−1

and the complementary sensitivity function

T (s) = (I +G(s)F (s))−1G(s)F (s)

Describe the differences between the robust design and the nominal design in terms of
the sensitivity functions. Is the robust design better with respect to sensitivity and
robustness?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.3.4. Simulate the closed-loop system in Simulink. Compare with the
result that you obtained simulating the nominal design. What are the differences and
similarities?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now solve the above problems for the non-minimum phase case.

Exercise 3.3.5. Describe the most important differences between the two cases.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1 Introduction

In this laboratory experiment we will control the four-tank process, which is a mul-
tivariable system. In particular we will investigate interactions between inputs and
outputs as well as properties of non-minimum phase dynamics.
The experiment is divided into two occasions. On the first occasion, the modeling
and the manual control is performed. This will give you numerical values of some
important parameters. Relevant parts of the computer exercises are then repeated,
using the identified parameters, to obtain model based controllers. On the second
occasion, the control design is evaluated.
Signing up for the laboratory experiment: You should form groups of four stu-
dents, and then sign up for the laboratory through BILDA. It is important that you
sign up for the same four-tank process (A, B, C, D) on both laboratory occasions,
since you will use the model obtained on the first occasion for the control design in the
second occasion.
Preparations for occasion 1: Chapters 3.3, 3.5, 3.6, 6.5, 7.3-7.5, 7.7, 8.3, 10.5 in
Glad, T. and Ljung, L.: “Control theory—multivariable and nonlinear methods”. Read
the lab instructions and solve the problems that can be solved in advance. Also read
the Appendix. Note: You need to be registered for the course in order to log
on to the computers.
Preparations for occasion 2: Four controllers should be prepared and brought to
occasion 2. The controllers can be generated through repeating relevant parts of the
computer exercises using the parameters identified during lab occasion 1.
One controller for the minimum phase case and one for the non-minimum phase case.
In addition to this, construct a robustified controller (for each cases) using the Glover-
McFarlane method. Bring the MATLAB scripts and generate the controllers on the
lab computer. On page 8 it is described how to name and save the controllers.
Presentation: All problems in this exercise should be solved and be presented in a
written report. The date when the report should be handed in is indicated on the
course website. The report should be a full report, contain abstract and conclusions,
relevant figures and tables with captions and legends, etc. Focus on explaining what
you have done, and do not repeat theorems but cite them. Remember to write concise
(a report is not a novel), be specific in your writing (“the overshoot is 20%” compared
to “the overshoot is not so good”), and check your speling. The report will be graded
based on both the content and presentation.
Additional information: Check the course website and the white-board in the lab
for additional instructions. Don’t forget to save your data to plot the figures for the
report.
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u1 u2

y1 y2

Tank 1 Tank 2

Tank 3 Tank 4

Pump 1 Pump 2

Figure 13: The four-tank process

2 Laboratory occasion 1

In the exercises below a physical model of the four-tank process will be constructed.
Then, we will investigate manual control and coupling between the tanks. Performance
limitations due to non-minimum dynamics will be investigated. Finally, we will design
model based controllers, more specifically decentralized PI control and robust control
using the Glover-McFarlane method.

2.1 Modeling

Here the nonlinear differential equations which describe the four-tank process will be
derived. The process is shown schematically in Figure 13. For each tank the following
relation holds:

dV = (qin − qout)dt

where dV is the change in water volume during the time dt. Divide this equation by
dt and assume that V = Ah where A is the cross section area of the tank and h its
water level. Then we obtain

A
dh

dt
= qin − qout

For the outflow of water, Bernoulli’s law holds:

qout = a
√

2gh

2



where a is the cross section area of the outlet hole and g = 981cm/s2. The flow q
generated by a pump is considered proportional to the applied pump voltage u:

q = ku

where k is the constant. This flow is then divided according to

qL = γku, qU = (1− γ)ku, γ ∈ [0, 1]

where γ indicates the setting of the valve which is connected to the pump. qL denotes
the flow to the lower tank and qU is the flow to the upper tank.
Exercise 2.1.1. Show that the following equations describe the water levels in the
four tanks.

dh1

dt
= − a1

A1

√
2gh1 + a3

A1

√
2gh3 + γ1k1

A1
u1

dh2

dt
= − a2

A2

√
2gh2 + a4

A2

√
2gh4 + γ2k2

A2
u2

dh3

dt
= − a3

A3

√
2gh3 + (1− γ2)k2

A3
u2

dh4

dt
= − a4

A4

√
2gh4 + (1− γ1)k1

A4
u1

where index i in Ai, ai and hi refer to tank i and index j in kj and γj refer to pump j
and valve j.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assume that the levels in the lower tanks are measured by sensors for which the output
voltages yi are proportional to the water levels hi:

yi = kchi

where kc is a constant.
Exercise 2.1.2. Write down the equations which describe an equilibrium u0

1, u0
2, h0

1,
h0

2, h0
3, h0

4, y0
1, y0

2 for the tanks.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let ∆ui = ui − u0
i , ∆hi = hi − h0

i and ∆yi = yi − y0
i denote the deviations from an

equilibrium. Introduce

u =
[

∆u1
∆u2

]
, x =


∆h1
∆h2
∆h3
∆h4

 , y =
[

∆y1
∆y2

]
.
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Exercise 2.1.3. Show that the linearized system is given by

dx

dt
=


− 1
T1

0 A3
A1T3

0
0 − 1

T2
0 A4

A2T4
0 0 − 1

T3
0

0 0 0 − 1
T4

x+


γ1k1
A1

0
0 γ2k2

A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0

u

y =
[
kc 0 0 0
0 kc 0 0

]
x

where

Ti = Ai
ai

√√√√2h0
i

g
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercise 2.1.4. Show that the transfer matrix from u to y is given by

G(s) =
[
g11(s) g12(s)
g21(s) g22(s)

]
=
 γ1k1c1

1+sT1

(1−γ2)k2c1
(1+sT3)(1+sT1)

(1−γ1)k1c2
(1+sT4)(1+sT2)

γ2k2c2
1+sT2


where ci = Tikc/Ai.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercise 2.1.5. The zeros of G(s) are given by the zeros of

detG(s) = k1k2c1c2

Π4
i=1(1 + sTi)

[
(1 + sT3)(1 + sT4)− (1− γ1)(1− γ2)

γ1γ2

]

Show that G(s) is minimum phase if 1 < γ1 + γ2 ≤ 2 and that G(s) is non-minimum
phase if 0 < γ1 + γ2 ≤ 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exercise 2.1.6. Show that the RGA of G(0) is given by[

λ 1− λ
1− λ λ

]

where λ = γ1γ2/(γ1 + γ2 − 1). In the minimum phase case we have γ1 = γ2 = 0.625
and in the non-minimum phase case we have γ1 = γ2 = 1 − 0.625 = 0.375. Calculate
the RGA matrix for both these cases.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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All tanks have cross section area A = 15.52 cm2. However, their effective outlet hole
areas vary slightly, and therefore these have to be determined experimentally. We will
use different outlet hole sizes in the upper tanks depending on if we are studying the
minimum phase or non-minimum phase case. (The outlet holes in the two lower tanks
should always have the same size). This means that we will have to determine six
(effective) outlet hole areas altogether.
The level sensors have the proportionality constant kc = 0.2 V

cm
. For the minimum

phase case, γ1 = γ2 = 0.625 and for the non-minimum phase case we have γ1 = γ2 =
1− 0.625 = 0.375.
In order to determine the remaining parameters, (a1 a2 a3,min a3,nonmin a4,min a4,nonmin
k1 k2), experiments will be performed.
It is important to prepare proposals for suitable experiments (in order to
solve the problems stated below) before performing the laboratory exercise.
Then, in order to perform the experiments, the four-tank process will be set up ac-
cording to the following instructions:

1. Turn on the computer and login with your KTH-account1.

2. Connect the minimum phase case according to the instructions in appendix A.2.

3. Double-click the icon “Quadrupletank” at the Desktop.

4. The program starts by asking if any controllers are to be loaded. Answer no by
typing “n” and pressing enter.

5. Start the program by pressing the green Start button.

6. Turn on the two UPM’s by pushing the buttons at the back.

7. Choose 50 (% of maximum voltage) of the control signals in the boxes “Control
sig. pump 1/2”, and check that water is pumped into all tanks.

Exercise 2.1.7. Propose a suitable experiment2 to determine k1 and k2 [ cm3

s·V ], and
perform it.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hint: All measurement are given as percentage of their maximum value.

1You need to be registered for the course to get access to the computers.
2Tip: there might be air in the tubes, even when the pumps are on. Let the water flow and squeeze

the tubes carefully to eliminate the air. A good idea is to run the experiment with u1=u2=7.5 V (50%
of maximum voltage).
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Exercise 2.1.8. Propose a suitable experiment to determine the four effective outlet
hole areas ai for the minimum phase case, and perform it. (In order to save time, we
will determine a3,nonmin and a4,nonmin later.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Manual control

Solve the problems below for both the minimum phase and the non-minimum phase
case. It is suitable to start with minimum phase.

Exercise 2.2.1. Set the pumps on 50 (% of maximum voltage). Wait until stationarity
and read the levels on all four tanks from the scale indicated in cm on the four-tank
process. Are the levels (fairly) in accordance with the calculations on the equations in
Exercise 2.1.23?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 2.2.2. Study the step responses (the two outputs) from one input at a time
for the two cases (minimum and non-minimum phase). Does the system seem to be
coupled? Is this in accordance with the indications of the RGA?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 2.2.3. Choose suitable reference levels for the two lower tanks, for example
15 cm (60% of full tank). Try to manually set the pump voltages so that the values
displayed on the computer screen become equal to the reference values4. How long is
the transient time?
Hint: Patience is required for the non-minimum phase case. (If you have not succeeded
after 10 minutes, skip it and move on.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3The level sensors are not calibrated exactly, and therefore the value you read from the scale does
not correspond exactly to the value displayed on the screen.

4Because of sensitive technique of measurement, it might happen that the signals from the level
sensors are subject to small jumps every now and then, so called “offset jumps”.
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1. Connect the components according to the non-minimum phase case described in
appendix A.2.

2. Go back to Exercise 2.1.8 and determine a3,nonmin and a4,nonmin.

3. Now repeat the exercises above for the non-minimum phase case.

Exercise 2.2.4. For the above exercises, what are the most important differences
between the minimum phase and the non-minimum phase case?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first laboratory occasion is now completed, but don’t forget to:

1. Log out from the computer, and turn off the UPM:s.

2. Make sure that the laboratory spot is nice and clean.

3. Do the preparation tasks for the next laboratory occasion (they are described in
the next section.)

7



3 Calculation of controllers

Before laboratory occasion 2, four controllers will be calculated.

Exercise 3.1.1. The values of the effective outlet hole areas, the ki and γi (i = 1,2)
that you obtained will now be used to calculate controllers for the next laboratory
occasion. Therefore, change the values in the files minphase.m and nonminphase.m.
After that, repeat relevant parts of the computer exercises to obtain four controllers.
Two controllers for the minimum phase case and two for the non-minimum phase case.
In each phase-case, the first controller should be the decentralized controller which
you thought was the best when performing the computer exercise. Do not forget to
motivate your choice. The second controller should be a robustified Glover-McFarlane
controller.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The controllers are saved as .MAT files using the function save (type help save for more
information). The files must be named reg1.MAT, reg2.MAT, reg3.MAT and reg4.MAT
and must contain state space representations of controllers. The state space matrices
must be named A, By, C and Dy.
Note: It is preferred, and a huge advantage, to bring a MATLAB script file that
generates the controllers in the lab. There are some incompatibilities between differ-
ent MATLAB versions, and it also lets you recompute the parameters at the second
occasion if the four tank process has changed.
If the controller F is available on transfer function form, the following MATLAB code
can be used to save it:

F=ss(F,’min’);
[A,By,C,Dy]=ssdata(F);
save regX.MAT A By C Dy
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4 Laboratory occasion 2

4.1 Decentralized control

The exercises below require that you have repeated the design process in the computer
exercises with the parameters obtained on the previous lab occasion. Make sure that
small step responses and load disturbances do not cause saturation of the control
signals. Start by setting up the four-tank process in the following way:

1. Use the same laboratory equipment as in laboratory occasion 1 to connect the
four-tank process.

2. Turn on the computer and login with your KTH-account5.

3. Connect the minimum phase case according to the instructions in appendix A.2.

4. Generate and save the four controllers (according to the instructions in section 3).

5. Double-click the icon “Quadrupletank” on the Desktop.

6. The program starts by asking if you want to load controllers. Answer yes by
typing “y” and then press enter. Locate and select reg1.MAT (the remaining
controllers will then load automatically).

7. Start the program by pushing the green Start button.

8. Turn on both UPM:s by pushing the button at the back.

9. Choose 50 (% of maximum voltage) of the control signals in the boxes “Control
sig. pump 1/2”, and check that water is being pumped into all tanks.

Solve the exercises below for both the minimum phase and non-minimum phase case.
It is suitable to start with the minimum phase case.

Exercise 4.1.1. Wait until stationarity. Choose the best decentralized PI controller.
Choose Automatic in the popup menu “Operational Mode”. Make sure that you work
with small deviations from these levels, about 5 percentage points. Investigate the
system’s response from a step in one of the reference signals. What is the rise time and
the overshoot? Also, investigate the system’s response to different load disturbances:
pour a cup of water in one of the lower tanks; open an extra outlet in one of the upper
tanks. How long time does it take for the controller to eliminate the load disturbances?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5You need to be registered for the course to get access to the computers.
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Now connect the non-minimum phase case according to the instructions in appendix A.2.
Then repeat the exercise above for the non-minimum phase case. (Problems can occur
when opening an extra outlet in one of the upper tanks. In that case, specify what
kind of problems that you get.)

Exercise 4.1.2. For the exercises above, what are the most important differences
between the minimum phase and non-minimum phase case?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Robust control

The exercises below require that you have repeated the design procedures in computer
exercise 4 using the parameters obtained previously in this laboratory experiment.
Solve the problems below for both the minimum phase and the non-minimum phase
case. It is suitable to start with the latter, since the laboratory equipment now is
connected according to the non-minimum phase case.

Exercise 4.2.1. Wait until stationarity. Choose the Glover-McFarlane controller cal-
culated according to the instructions in computer exercise 4. Choose Automatic in the
pop up menu “Operational Mode”. Make sure that you work with small deviations
from these levels. Investigate the system’s response to a step in one of the reference
signals. What is the rise time and the overshoot? Also, investigate responses from
different load disturbances: pour a cup of water in one of the lower tanks; open an
extra outlet in one of the upper tanks. How long time does it take for the controller
to eliminate the load disturbances?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 4.2.2. What are the most important differences in performance when com-
paring the different controllers?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Connect the minimum phase case according to the instructions in appendix A.2. Then
repeat the exercises above for the minimum phase case.
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Exercise 4.2.3. For the above exercises, what are the most important differences
between the minimum phase and the non-minimum phase case?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The second laboratory occasion is now completed, but don’t forget to:

1. Log out from the computer, and turn off the UPM:s.

2. Make sure that the laboratory spot is nice and clean.

3. Write the report!
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A Manual for the four-tank process

This manual is divided into four parts. The first part describes how to connect the
process. The second describes how to connect the minimum phase and non-minimum
phase case. The third part deals with the graphic user interface. The fourth part deals
with disconnecting the process.
Note: You will need to perform the steps in appendix A.2.

A.1 How to connect the components of the four-tank process

The four-tank process consists of two double-tank processes connected to each other.
The double-tanks are used for the laboratory experiments in the basic control course.
Now we will describe how to connect the components of the four-tank process.

• Find the two double-tank processes that you are going to use. (Your group
letter decides which two process that you are going to use, see “Signing up for
the laboratory experiment” on page 1.) From now on, we will denote these two
process “left” and “right”, as seen from the front. Carefully remove the blue water
bowls. Release the right process by disconnecting the two cords connected to it.
Carefully put the right process as close to the left process as possible. (Put both
processes at the same table, so that there is no differences in altitude between
them). On top of the cupboard at the back of the hall, there is a bigger water
bowl which you will place under both the two lower tanks. Fill it with water,
almost to the top.

• We will only use the computer of the left process, and we will soon connect the
measurement and control signals. However, we will use the UPM:s (Universal
Power Module) of both processes. There is an I/O card which belongs to the
computer, and you find it at the back of the computer. We will use the card’s
analogue Input and Output sockets. The left process should already be correctly
connected, but to be sure we will verify it. Its control signal 6 should be connected
to the card’s “Analog Output kanal 0”. Its level sensor for the lower tank7 should
be connected to the card’s “Analog Input kanal 5”. The remaining three level
sensor cords should not be connected. Disconnect the cords which are connected
to the I/O card of the right computer (not the broad gray flat band cables).
Move the UPM of the right process closer to the left one, so that its cords can
be connected to the I/O card of the left computer. Connect the control signal
of the right process to the card’s “Analog Output kanal 1” and the lower tank
level sensor of the right process to “Analog input kanal 4”. Finally, connect the
two non-connected cords 8 from the right UPM to the right process. If you are
unsure: check once again that you have connected the process correctly!

6The black cord which is connected to “From D/A” at the UPM.
7The white socket, (marked with 2), at the broad socket with 4 channels which is connected to “To

A/D” at the UPM.
8The black cord connected to “To Load” at the UPM and the gray cord.
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A.2 Minimum phase and non-minimum phase settings

Depending on which phase case you are working with, you should use different outlet
holes of the upper tanks, and connect the cords differently. Below you find a description
of this procedure.
For each double-tank process, there are three extra outlet plugs (besides those that are
already screwed under the tanks). One located far to the left which has no holes, one
in the middle which has a small hole and finally one to the right which has a large hole.
In the minimum phase case, each pump pumps most of the water into “its own” lower
tank, and only a smaller fraction of water into the upper tank at the other side. With
this setting, we obtain a γ larger than 0.5. In the non-minimum phase case we have
the opposite situation, and γ is therefore less than 0.5.

A.2.1 The minimum phase case is connected in the following way

• Put something on top of the two lower tanks, for example a paper towels. (To
make sure that nothing falls down into them 9.)

• Use the wrench attached to the process to unscrew the plugs under both the
upper tanks. Place each screw among the set of extra screws on each process (to
the left of the plug located at the far right side).

• Put the small outlet holes in both the upper tanks. It is not necessary to pull
tight. (Remember that the processes are fragile.)

• The four tubes, which will be connected according to the instructions below,
have to end approximately 27 cm above the bottom of the upper tanks10. It is a
good idea to pull the tubes through the holes located at the top of the four-tank
process, so that the tubes go partly at the back of the process.

• Pull the tube from “Out 1” at the left process to the extra plastic pipe next to
tank 3, so that its water falls directly into tank 1. (The numbering of the tanks
is given in Figure 1 on page 2.)

• Pull the tube from “Out 2” at the left process to tank 4.

• Pull the tube from “Out 1” at the right process to the extra plastic pipe next to
tank 4, so that its water falls directly down in tank 2.

• Pull the tube from “Out 2” at the right process to tank 3.

9If anything falls into the tanks, one has to disconnect tubes and cords from that process. Then
one has to tilt the process very carefully so that the item that fell into the tank falls out.

10If the tubes end at different altitudes, the constants k1, k2, γ1 and γ2 can be affected, because
the driving force acting on the water is changed.
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A.2.2 The non-minimum phase setting is obtained in the following way

• Put something on top of the two lower tanks, for example a paper towels. (To
make sure that nothing falls down into them).

• Unscrew the plugs located under the two upper tanks. For each process, place
the plug among the set of extra screws (to the right of the plug located at the
far left side).

• Put the medium size holes in the two upper tanks. It is not necessary to pull
tight. (Remember that the processes are fragile.)

• The four tubes, which will be connected according to the instructions below,
have to end approximately 27 cm above the bottom of the upper tanks. It is a
good idea to pull the tubes through the holes located at the top of the four-tank
process, so that the tubes go partly at the back of the process.

• Pull the tube from “Out 2” at the left process to the extra plastic pipe next to
tank 3, so that its water flows directly into tank 1.

• Pull the tube from “Out 1” at the left process to tank 4.

• Pull the tube from “Out 2” at the right process to the extra plastic pipe next to
tank 4, so that its water falls directly into tank 2.

• Pull the tube from “Out 1” at the right process to tank 3.
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A.3 The graphic user interface
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Figure 14: The graphic user interface.

• The interface is opened by double-clicking on the “Quadrupletank” MATLAB
icon on the desktop.

• The program starts by asking if you want to load controllers. Choose yes or no
depending on if you have designed controllers or not.

• Click on the green or red button at the top to the right to start or stop the
process.

• Click on the popup menu Regulator to choose controller. (This popup menu is
only displayed if you have loaded controllers.)

• The tank levels and the reference signals are plotted in the upper graph, and the
control signals are plotted in the lower. The upper graph is scaled in percentage
of full tank, so that 100 corresponds to 25 cm. The lower graph is scaled in
percentage of maximal control signal, so that 100 corresponds to 15 V.

• In the popup menu Operational Mode you can switch between manual and au-
tomatic control.

• In order to change the manual control signal you could either pull the handle or
type directly in the box.
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• To change the reference value you can either pull the handle or type directly in
the box.

• By right-clicking at an axis, a dialog box for zooming is opened. You can also
use the capture button to study and zoom collected data.

• The Time Offset at the bottom to the left shows the time between 0 and the
time displayed on the x axis. To obtain the true time at the x axis, you therefore
add the offset value. (The time t = 0 is the time when you start the program
using the green start button.)

• The Capture button is used to study collected data during operation. Click on
the button to obtain a figure with reference signals and measured signals. (Use
the zoom tool in the figure menu to zoom).

• Save data by clicking on the capture button. Then you obtain a box where you
can save data. The data (time, measured signals, reference signals and control
signals) is saved as data.mat. If you already have a file with that name, the name
becomes data1.mat etc up to data3.mat. (After that you have to use another
folder). The data is loaded into MATLAB with the function load dataX.mat.
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A.4 How to disconnect the four-tank process

When disconnecting the four-tank process it is very important that the
middle size holes are screwed in the upper tanks. Check this and therefore
go through the items below:

1. Empty the large water bowl and put it on top of the cupboard at the back of the
hall.

2. Disconnect the tubes between two double-tank processes.

3. Make sure that no tube is connected to “Out 2”.

4. Connect a tube to “Out 1”, put it through some hole so that it comes out at
the back of the process, and then through the hole which is just above the upper
tank. Then put the tube into the upper tank. Do this for both processes.

5. Remove the cables of the right UPM from the I/O card of the left computer.
Also, disconnect the right process by disconnecting the two cords connected to
it.

6. Put back each process (with its UPM) at its original spot and put a blue water
bowl under each double-tank process.

7. Connect the level sensors to each tank11 at the card’s “Analog Input kanal 4”
and “Analog Input kanal 5” respectively. (The yellow at 4 and the white at 5.)

8. Connect each control signal 12 to “Analog Output kanal 0” at each I/O card.

9. Finally, connect the two non-connected cords13 from the right UPM to the right
process.

11The yellow and white sockets, (marked with 1 and 2 respectively), at the broad cord with 4
channels connected to “To A/D” at the UPM

12The black cord connected to “From D/A” at the UPM.
13The black cord connected to “To Load” at the UPM and the gray cord.
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