

Turbulence

There are no "simple" turbulent flows

Turbulent boundary layer:

• Instantaneous velocity field (snapshot) $u_i(x,t)$

Ref: Prof. M. Gad-el-Hak, University of Notre Dame

Prediction of turbulent flows

Standard RANS models

Advanced RANS models

Direct Numerical Simulation – DNS

Large Eddy Simulation – LES

Hybrid RANS – LES methods

Prediction of turbulent flows

Basic concepts

- Turbulence is:
 - random fluctuations
 - 3D
 - time dependent
 - present in most flows of engineering interest
- Energy cascade
 - generated at the largest scales (L and U)
 - large scale vortices breakes down to smaller vortices
 - dissipates to heat at the smallest viscous scales, ϵ
 - balanced cascade

$$\varepsilon \sim \frac{U^3}{L}$$

- turbulent kinetic energy

$$K \sim U^2$$

- Acoustics and dynamic loads
- Huge Reynolds number dependency

Expensive!

DNS – RANS RANS:

- Reduction of dimensions –> cheap Here: 2D and steady
- Only statistical information of turbulence scales: Time and length scales rms values

Scale separation

- Large scales L and U related to geometrical scales
- Small viscous scales (related to ν and $\epsilon)$

$$l_K = \eta \sim \left(\frac{\nu^3}{\varepsilon}\right)^{1/4}, \quad t_K \sim \sqrt{\frac{\nu}{\varepsilon}}$$

Scale separation

$$\frac{L}{\eta} \sim Re^{3/4}, \quad \frac{t}{t_K} \sim Re^{1/2}$$

Reynolds number

$$Re = \frac{LU}{v}$$

Different Reynolds numbers

- Based on global scales

$$Re_L = \frac{LU}{v}$$

- Based on distance x from leading edge (flat plate)
 - $Re_x = \frac{xU}{v}$
- Based on boundary layer thickness (δ)

$$Re_{\delta} = \frac{\delta U}{v}$$

- Based on wall skin friction

$$Re_{\tau} = \frac{\delta u_{\tau}}{v}$$

Viscosity

- Kinematic viscosity, v
- Dynamic viscosity, μ
- Density, ρ

 $\mu = \rho \nu$

Boundary layers (BL)

- Thin layers
 - Thickness Reynolds number dependent
- Laminar boundary layers
 - Thickness related to wall skin friction
- Turbulent boundary layers
 - Inner and outer scales separated
 - Scale separation Reynolds number dependent

• Figures (Wing+bl – bl – near-wall)

BL on the ONERA A-profile

Approximation of BLs

- Slip wall boundary condition
 - Boundary layer completely neglected
 - Euler (non-viscous) computations possible
 - Slip BC can also be applied to viscous & turbulent CFD
- No slip boundary condition
 - Boundary layer completely resolved $(y^+=1)$
 - Extreme resolution needed ($\Delta y = 1-100 \mu m$)
 - 40-80 grid points within the boundary layer
- Log-law boundary condition (turbulence)
 - First grid point within log layer ($y^+ > 20$ AND $y < 0.1\delta$)
 - 10-20 grid points within the boundary layer
 - Warning: standard log-law BCs inconsistent with too small grid size. READ SOLVER DOCUMENTATION !!!

What's in Fluent?

- Standard and Non-Equilibrium Wall Functions:
 - "Wall adjacent cells should have y+values between 30 and 300–500" – (remember $y < 0.1\delta$!)
 - "The mesh expansion ratio should be small (no larger than around 1.2)"
 - "Non-equilibrium wall function method attempts to improve the results for flows with higher pressure gradients, separations, reattachment and stagnation"
- Scalable Wall Functions:
 - Consistent for all y+values

What's in Fluent? ...

- Enhanced Wall Treatment Option
 - Combines a blended law-of-the wall and a two-layer zonal model.
 - Suitable for low-Re flows or flows with complex near-wall phenomena.
 - Generally requires a fine near-wall mesh capable of resolving the viscous sublayer
 - y+< 5, and a minimum of 10–15 cells across the "inner layer" for best results
 - Valid for all y+
 - Available for all k-e and k-w models
 - Not yet for Spalart-Allmaras (y+<3 OR y+>15)

Recommendations for Fluent

- For *K*-*ε* models
 - use Enhanced Wall Treatment: EWT-*ε*
- If wall functions are favored with K- ε models
 - use scalable wall functions
- For *K*-*ω* models
 - use the default: EWT- ω

Wall bounded turbulence

Viscous wall scales

$$l_* = \frac{v}{u_\tau}, \quad t_* = \frac{v}{u_\tau^2}$$

Wall friction velocity

$$u_{\tau} = \sqrt{\frac{\tau_w}{\rho}} = \sqrt{\frac{\nu \partial U}{\partial y}} = U \sqrt{\frac{1}{2}C_f}$$

• Friction coefficient

$$C_f = \frac{\tau_w}{\frac{1}{2}\rho U^2} = 2\left(\frac{u_\tau}{U}\right)^2$$

• Viscous wall distance

$$y^+ = \frac{y}{l_*} = \frac{yu_{\tau}}{v}$$

Empirical relations for BLs

• Friction coefficient

- Turbulent
$$\frac{C_f}{2} \approx 0,0296 R e_x^{-1/5}$$

- Laminar
$$\frac{C_f}{2} = 0,332 R e_x^{-1/2}$$

• Boundary layer thickness

- Turbulent
$$\frac{\delta}{x} \approx 0.37 R e_x^{-1/5}$$

- Laminar
$$\frac{6}{x} = 5,0Re_x^{-1/2}$$

Empirical relations plotted

Empirical relations plotted

Turbulence modelling

Reynolds decomposition

 The "mean" is time average, ensemble average or averaging in homogeneous directions. U_i(x) may actually vary in time with a time scale much longer than the turbulent time scale.

 $\tilde{u}_i(\mathbf{x}, t) = U_i(\mathbf{x}) + u_i(\mathbf{x}, t)$

where $U_i(\mathbf{x}) = \overline{\tilde{u}_i(\mathbf{x},t)}$ and $\overline{u_i(\mathbf{x},t)} = 0$

Take the mean of the Navier-Stokes equations -> RANS

$$\frac{\partial U_i}{\partial x_i} = 0$$

$$\frac{\partial U_i}{\partial t} + U_k \frac{\partial U_i}{\partial x_k} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_k} \left(v \frac{\partial U_i}{\partial x_k} - \overline{u_i u_k} \right)$$

Reynolds stresses

- Not "small"
- Significant effects on the flow
- Needs to be modelled in terms of mean flow quantities
- Reduces the problem to steady (or slowly varying)
- 2D assumptions possible
- Equation can be derived from Navier-Stokes equations
- Need modelling

Eddy-viscosity models (EVM)

- Assume: Reynolds stresses related to an "eddy viscosity", $\nu_{\mathcal{T}}$

$$\overline{u_i u_j} = -2v_T S_{ij} \qquad \left(+\frac{1}{3} \overline{u_k u_k} \delta_{ij} \right)$$

where
$$S_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right)$$

Based on Boussinesq (1877)

• Eddy viscosity ~ turbulence velocity V and length L scales: $v_T \sim VL$

One-equation models

- One transport equation for K (turbulent kinetic energy) or v_T .
- Additional information from global conditions (typically wall distance)
- Works well for attached boundary layers
- Not very general, but more than algebraic models
- Example: Spalart-Allmaras (1992)
 - reasonable and robust model for external aerodynamics
 - Boeing's "standard model"

Two-equation models

- Two transport equations for the turbulence scales ($K-\varepsilon$ or $K-\omega$)
- Completely determined in terms of local quantities (except nearwall corrections which may be dependent on wall distance)
- Works well for attached boundary layers
- Somewhat more general than zero-, one-equation models
- Model transport equations loosely connected to the exact equations.
- Examples:
 - Standard $K-\varepsilon$ model (Launder & Spalding 1974)
 - Wilcox *K*–*ω* (1988, ...) models
 - Menter (1994) SST $K-\omega$ model (performing reasonable well also in separated flows)

Airbus' "standard model"

Eddy-viscosity models ...

- Problems:
 - No dependency on rotation or curvature. Real turbulence strongly dependent.
 - Modelled production proportional to strain rate squared ~ S². Exact production ~ S. Results in a overestimated production of K in highly sheared flows (around stagnation points, impinging jets, pressure gradient BLs, separated flows).
- Fixes
 - Rotation & curvature corrections
 - Yap correction (limit excessive turbulent lengthscale)
 - Menter SST correction (limit excessive v_T).

LES and LES/RANS hybrids

- Simulation of only the large scale turbulence (compare with DNS, simulation of all scales)
 - Always time dependent and 3D -> expensive
- Wall free turbulence simulations almost *Re* independent
- Wall bounded turbulence largely *Re* dependent
 - fully resolved near-wall region very expensive (almost as DNS)
 - wall-function or near-wall RANS coupling saves computational cost
 - hybrid RANS-LES (RANS in attached BLs and LES in wall-free separated regions) a very active research field, eg DES

LES and LES/RANS hybrids ...

- LES in academic research for:
 - low *Re* generic flows
 - complement to DNS for higher Re
 - gives detailed knowledge about turbulence
- LES in industrial use in:
 - internal flow with complex geometries
 - flows around blunt bodies (with large separated regions)
 - atmospheric boundary layers (e.g. weather forecasts)
 - combustion simulation
 - other complex flow physics at moderate Re
- Warning: LES is extremely expensive in high attached and slightly separated wall-bounded flows, if properly resolved.

How expensive is DNS?

• DNS of flat plate turbulent boundary layer

- Schlatter, et al., KTH, Dept. of Mechanics
- APS meeting 2010: http://arxiv.org/abs/1010.4000
- http://www.youtube.com/watch?v=4KeaAhVoPIw
- http://www.youtube.com/watch?v=zm9-hSP4s3w
- $-Re_{\theta} = 4300$
- $-8192 \times 513 \times 768 = 3.2 \times 10^9$ spectral modes (7.5×10⁹ nodes)
- $\Delta x^+ = 9, \Delta z^+ = 4 \longrightarrow \text{box: } L^+ = 70\ 000, \ H^+ = W^+ = 3\ 000$
- BL relations: $Re_x = 1.4 \times 10^6$
- CPU time: 3 months @ 4000 CPU cores = 1 unit
- DNS of model airplane, same Reynolds number (Re_x = 1.4×10⁶)
 - Only a narrow stripe wing requires about 1 000 stripes
 - $N_{nodes} = 10^{13}$
 - CPU = 10³ units

Empirical turbulent BL relations

- Skin friction coefficient: $\frac{C_f}{2} = \frac{\tau_w}{\rho U_{ss}^2} = \left(\frac{Re_\tau}{Re_s}\right)^2 \approx 0.0296 Re_x^{-1/5}$
- Boundary layer thickness: $\frac{\delta}{x} = \frac{Re_{\delta}}{Re_{x}} \approx 0.37 Re_{x}^{-1/5}$
- Boundary layer momentum thickness: $Re_{ au} pprox 1.13 Re_{ heta}^{0.843}$
- **Reynolds numbers:** $Re_{\tau} \equiv \frac{\delta u_{\tau}}{\nu}$ $Re_{\theta} \equiv \frac{\theta U_{\infty}}{\nu}$ $Re_{\delta} \equiv \frac{\delta U_{\infty}}{\nu}$ $Re_{x} \equiv \frac{xU_{\infty}}{\nu}$

DNS – full scale airplane

Re scaling – wall bounded flow

- Nodes:
$$N_{nodes} \sim \frac{L \times B \times H}{\Delta x \Delta z \Delta y} \sim L^{+2} H^+ \sim Re_x^{5/2}$$

- Time steps: $N_{\Delta T} \sim \frac{T}{\Delta T} \sim T^+ \sim Re_x^{4/5}$

– CPU time:
$$N_{CPU} \sim N_{nodes} imes N_{\Delta T} \sim R e_x^{33/10}$$

• DNS of Airplane ($Re_x = 70 \times 10^6$) (factor of 50)

- CPU = 10⁹ units

Supercomputer development

Computational effort – different approaches

Name	Aim	Unsteady	Re-dependence	3/2D	Empiricism	Grid	Steps	Ready
2DURANS	Numerical	Yes	Weak	No	Strong	105	10 ^{3.5}	1980
3DRANS	Numerical	No	Weak	No	Strong	10^{7}	10^{3}	1990
3DURANS	Numerical	Yes	Weak	No	Strong	10^{7}	$10^{3.5}$	1995
DES	Hybrid	Yes	Weak	Yes	Strong	10^{8}	10^{4}	2000
LES	Hybrid	Yes	Weak	Yes	Weak	$10^{11.5}$	106.7	2045
QDNS	Physical	Yes	Strong	Yes	Weak	10^{15}	107.3	2070
DNS	Numerical	Yes	Strong	Yes	None	10^{16}	$10^{7.7}$	2080

From Spalart, Int. J. Heat and Fluid Flow, 2000

- RANS: Reynolds Averaged Navier-Stokes
- URANS: Unsteady RANS slowly in time
- DES: Detached Eddy Simulation
- LES: Large eddy simulation
- QDNS: Quasi DNS, or wall resolved LES
- DNS: Direct Numerical Simulation (of the Navier-Stokes eq's)
- "Ready": When first results can be expected