Highway Construction and Maintenance

Group \qquad

Exercise 1, Question 1:

Due by April 7th, 2014

Each group will perform following tests in the laboratory:

1. Softening point R\&B according to EN 1427
2. Penetration at $25^{\circ} \mathrm{C}$ according to EN 1426

Heukelom diagram (1973).
a) Use your test results and plot it in the Bitumen Test Data Chart (BTDC). Predict viscosity at $60^{\circ} \mathrm{C}$, breaking point Fraass and Penetration index (PI). Then fill in the table with your results.
b) Calculate Penetration Index using equation developed by Pfeiffer and Van Doormal (1936) and fill in the table provided:

$$
\mathrm{PI}=\frac{1952-500 \log P E N-20 \mathrm{SP}}{50 \log P E N-\mathrm{SP}-120}
$$

Where,
SP = Softening Point
$P E N=$ Penetration at $25^{\circ} \mathrm{C}$

Table. 1 Test Results and Analysis

BINDER

	FROM LAB TESTS		FROM BTDC (Heukelom Diagram)			FROM EQUATION			
GROUP	Penetration	Softening Point dmm	Viscosity at $60^{\circ} \mathrm{C}$	Fraass Breaking Pt Poises	Penetration Index	Penetration Index			
					PI	PI	$	$	
:---	:---								

Highway Construction and Maintenance

Exercise 1, Question 2:

Determine the mixing and compacting temperature of the asphalt based on the binder viscosity results.

		Viscosity @ Temp	Viscosity @ Temp	Mixing temperature range	Compacting temperature range
Group 1	Binder A	$0,85 @ 140^{\circ} \mathrm{C}$	$0,33 @ 155^{\circ} \mathrm{C}$		
Group 2	Binder B	$0,70 @ 135^{\circ} \mathrm{C}$	$0,11 @ 170^{\circ} \mathrm{C}$		
Group 3	Binder C	$0,64 @ 150^{\circ} \mathrm{C}$	$0,15 @ 175^{\circ} \mathrm{C}$		

Highway Construction and Maintenance

Exercise 1, Question 3:

Permanent Deformation Approach

a) You are given two materials. Draw a vector diagram, and use the equations given in the lecture to determine the Complex modulus and phase angle. Which material is more elastic?

Material A	Material B
The elastic component of the complex modulus is 3, the viscous component of the complex modulus is 4.	The elastic component of the complex modulus is 4, the viscous component of the complex modulus is 3.

Fatigue Approach

b) You are given two materials. Draw a vector diagram, and use the equations given in the lecture to determine the Complex modulus. Which material is more elastic?

Material X	Material Y
The elastic component of the Complex modulus is 2 , the viscous component of the Complex modulus is 2 , the phase angle is 45°.	The elastic component of the Complex modulus is 1.7 , the viscous component of the Complex modulus is 1.2 , the phase angle is 35°.

