AF2903 Highway Construction and Maintenance

Group _____

Exercise 1, Question 1:

Due by April 7th, 2014

Each group will perform following tests in the laboratory:

- 1. Softening point R&B according to EN 1427
- 2. Penetration at 25°C according to EN 1426

Heukelom diagram (1973).

- a) Use your test results and plot it in the Bitumen Test Data Chart (BTDC). Predict viscosity at 60°C, breaking point Fraass and Penetration index (PI). Then fill in the table with your results.
- b) Calculate Penetration Index using equation developed by **Pfeiffer and Van Doormal** (**1936**) and fill in the table provided:

$$PI = \frac{1952 - 500\log PEN - 20SP}{50\log PEN - SP - 120}$$

Where, SP = Softening Point PEN = Penetration at 25°C

Table.1Test Results and Analysis

BINDER

	FROM LAB TESTS		FROM BTDC (Heukelom Diagram)			FROM EQUATION
GROUP	Penetration	Softening Point	Viscosity at 60°C	Fraass Breaking Pt	Penetration Index	Penetration Index
	dmm	°C	Poises	°C	PI	PI

Submit to: Ali Azhar Butt

AF2903 Highway Construction and Maintenance

Exercise 1, Question 2:

Determine the mixing and compacting temperature of the asphalt based on the binder viscosity results.

		Viscosity @ Temp	Viscosity @ Temp	Mixing temperature range	Compacting temperature range
Group 1	Binder A	0,85 @ 140°C	0,33 @ 155°C		
Group 2	Binder B	0,70 @ 135°C	0,11 @ 170°C		
Group 3	Binder C	0,64 @ 150°C	0,15 @ 175°C		

Submit to: Ali Azhar Butt

AF2903 Highway Construction and Maintenance

Exercise 1, Question 3:

Permanent Deformation Approach

a) You are given two materials. Draw a vector diagram, and use the equations given in the lecture to determine the Complex modulus and phase angle. Which material is more elastic?

Material A	Material B
The <u>elastic component</u> of the complex modulus is 3,	The <u>elastic component</u> of the complex modulus is 4,
the <u>viscous component</u> of the complex modulus is 4.	the <u>viscous component</u> of the complex modulus is 3.

Fatigue Approach

b) You are given two materials. Draw a vector diagram, and use the equations given in the lecture to determine the Complex modulus. Which material is more elastic?

Material X	Material Y
The <u>elastic component</u> of the	The elastic component of the
Complex modulus is 2,	Complex modulus is 1.7,
the viscous component of the	the viscous component of the
Complex modulus is 2,	Complex modulus is 1.2,
the <u>phase angle</u> is 45°.	the <u>phase angle</u> is 35°.