


# Lecture 3 Power System Measurement



## Outline of the Lecture



- Instrument Transformers
- (NPAG Ch. 6)
- Voltage Transformer
- Current Transformers
- Measurement Setups
- Transducers

(NPAG Ch. 22)

3

# The Current Transformer (CT)









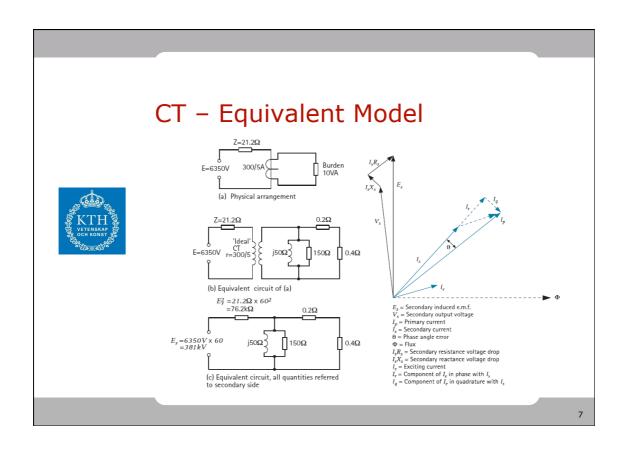
High Voltage

Medium Voltage

# CT - General Types




- Wound primary
  - Traditional transformer with secondary and primary windings
- Bar primary
  - The primary winding is a single bar, that passes through a core with the secondary winding.


5

## CT - Principle of Operation



- Traditional Electromagnetic transformer
- Is = Ip\*Np/Ns
- Normally Bar type CTs are used





## CTs Accuracy



| Accuracy<br>class |           | +/- Percentage current<br>(ratio) error |      |     | +/- Phase displacement<br>(minutes) |     |    |     |     |
|-------------------|-----------|-----------------------------------------|------|-----|-------------------------------------|-----|----|-----|-----|
|                   | % current | 5                                       | 20   | 100 | 120                                 | 5   | 20 | 100 | 120 |
| 0.1               |           | 0.4                                     | 0.2  | 0.1 | 0.1                                 | 15  | 8  | 5   | 5   |
| 0.2               |           | 0.75                                    | 0.35 | 0.2 | 0.2                                 | 30  | 15 | 10  | 10  |
| 0.5               |           | 1.5                                     | 0.75 | 0.5 | 0.5                                 | 90  | 45 | 30  | 30  |
| 1                 |           | 3                                       | 1.5  | 1.0 | 1.0                                 | 180 | 90 | 60  | 60  |

(a) Limits of error accuracy for error classes 0.1 - 1.0

|           | +/- current (r | atio) error, % |                                        |
|-----------|----------------|----------------|----------------------------------------|
| % current | 50             | 120            |                                        |
|           | 3              | 3              |                                        |
|           | 5              | 5              |                                        |
| Q         | ⁄o current     |                | +/- current (ratio) error, % % current |

(b) Limits of error for error classes 3 and 5

Table 6.4: CT error classes

# Voltage Transformers (VT)







Medium Voltage < 36kV

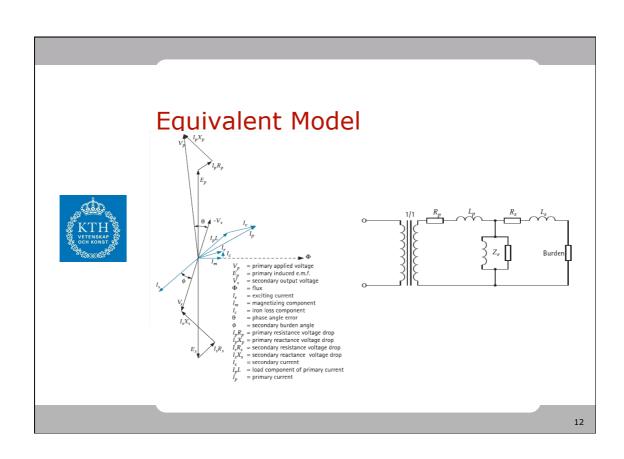
High Voltage

9

# VT - General Types



- Electromagnetic type
  - Commonly referred to as VT
  - Traditional Electromagnetic transformer
  - Used up to approx 130kV
    - Thereafter insulation problems arise
- Capacitor Type
  - Commonly referred to as CVT
  - Series coupled capacitors
  - Used up to EHV/UHV levels

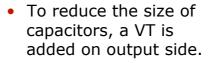

# VT – Principle of Operation

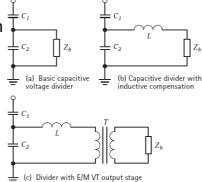
 Traditional Electromagnetic transformer



- Vs = Vp\*Ns/Np
- Connected either
  - Phase Earth
  - Phase Phase
- Single-pole
  - Star coupled







## CVT - Principle of Operation

Basic potential divider



Inductive compensation to cancel effect of capacitive source impedance





13

## VT - Design Factors

- Electromagnetic VT
  - Flux density in core well below saturation
  - Output design ranges 200-300 VA
  - Insulation larger volume than windings



- More space conserving
- May include a VT
- Can be used for overloading High-Frequency signals on Power Line.





## **VT Connection**



- VTs are single pole above 36 kV
- CVTs
  - Phase to Earth
- VTs
  - Phase to Phase,
     Phase to Earth
  - Star coupling



15

# VT - Accuracy

Accuracy classes for measurement & revenue metering



Accuracy classes for protection

| Accuracy | 0.8 - 1.2 x rated voltage<br>0.25 - 1.0 x rated burden at 0.8pf |                                 |  |  |  |
|----------|-----------------------------------------------------------------|---------------------------------|--|--|--|
| class    | voltage ratio error<br>(%)                                      | phase displacement<br>(minutes) |  |  |  |
| 0.1      | +/- 0.1                                                         | +/- 5                           |  |  |  |
| 0.2      | +/- 0.2                                                         | +/- 10                          |  |  |  |
| 0.5      | +/- 0.5                                                         | +/- 20                          |  |  |  |
| 1.0      | +/- 1.0                                                         | +/- 40                          |  |  |  |
| 3.0      | +/- 3.0                                                         | not specified                   |  |  |  |

| Accuracy | 0.25 – 1.0 x rated burden at 0.8pf<br>0.05 – $V_f$ x rated primary voltage |                           |  |  |  |
|----------|----------------------------------------------------------------------------|---------------------------|--|--|--|
| class    | voltage ratio error<br>(%)                                                 | phase displacement<br>(%) |  |  |  |
| 3P       | +/- 3.0                                                                    | +/- 120                   |  |  |  |
| 6P       | +/- 6.0                                                                    | +/- 240                   |  |  |  |
|          |                                                                            |                           |  |  |  |

Table 6.2: Additional limits for protection voltage transformers.

## Summary - VTs/CTs



- VTs and CTs are the primary measurement method for medium and high voltage
- Important design characteristics are
  - Accuracy for revenue metering
  - Linearity for protection
  - Size = cost
- The output is further transformed using transducers.

17

#### Contents of the Lecture

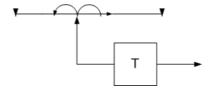


- Instrument Transformers
  - sformers (NPAG Ch. 6)
  - Voltage Transformer
  - Current Transformers
- Measurement Setups
- Transducers

(NPAG Ch. 22)

#### What do we need to measure?

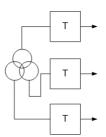



- VoltageV
- Current I
- Frequency
- Phase angle φ
- Power Q,P
- Position on/off
- .....

19

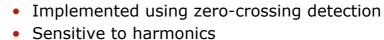
## **Current Measurement**




- Connected to secondary side of CT
- Cannot sense direction
- Measurement types
  - Mean sensing
  - r.m.s. measurement

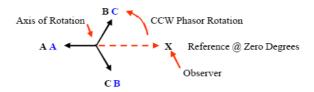


# Voltage Measurement


Connected to secondary of VT/CVT






21

# Phase Angle Measurement



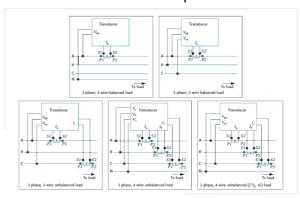


Connected to phases and quantities (U or I) as needed for measurement



## Frequency Measurement




- Important for system operation
- Analog Digital conversion
  - Fourier Transform for *f* analysis
- Accuracy up to 0,01% available, +/- 5 mHz
- Connected to VT or CT secondary

2

## **Power Measurement**



- Measurement of P & Q
  - Many configurations available
  - Direction of the flow important



## Outline of the Lecture



• Instrument Transformers

(NPAG Ch. 6)

- Voltage Transformer
- Current Transformers
- Measurement Setups.
- Transducers

(NPAG Ch. 22)

25

# Wiring & Communication Wiring & Communication Figure 1 and 1 and

#### **Transducers**



 A transducer is a device, usually electrical, electronic, or electro-mechanical, that converts one type of energy to another for various purposes including measurement or information transfer. In a broader sense, a transducer is sometimes defined as any device that converts a signal from one form to another.

www.wikipedia.org

27

## Benefits of using transducers



- Reduces the burden on instrument transformers
- Ability to mount display equipment remote from the measurement point
- Ability to use multiple display units per measurement point
- Reducing need for long wiring from instrument transformers

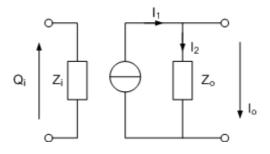


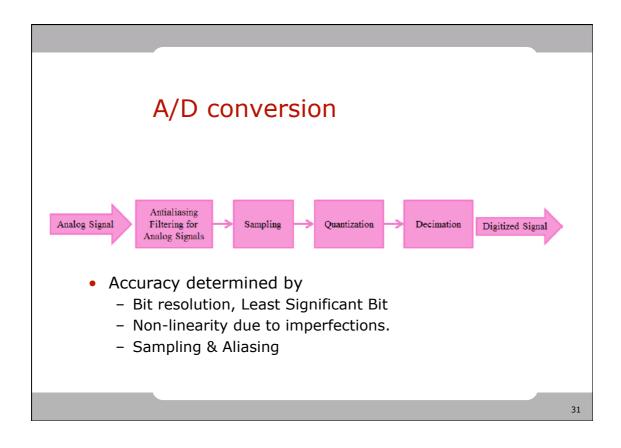


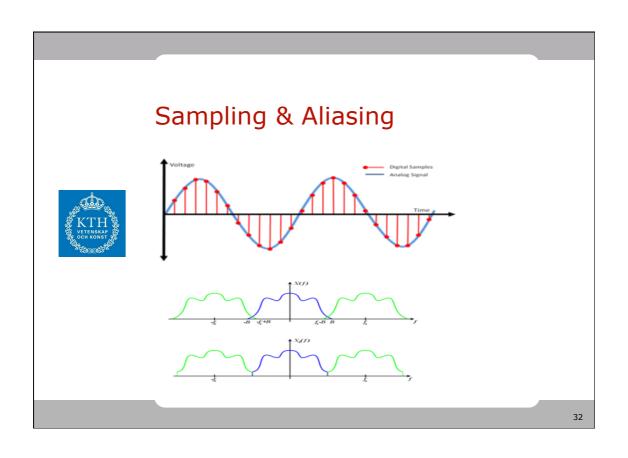
## Transducer types

Analog or Digital transducers



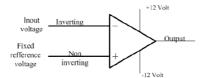

- Digital transducers (A/D conversion)
  - Benefits
    - Improved long-term stability
    - More accurate r.m.s measurement
    - Improved Communications
    - Programmable scaling
    - Reduced size
    - Wider range of functions
  - Output normally a RS-485 or 232 interface


20


## Equivalent Model (analog)



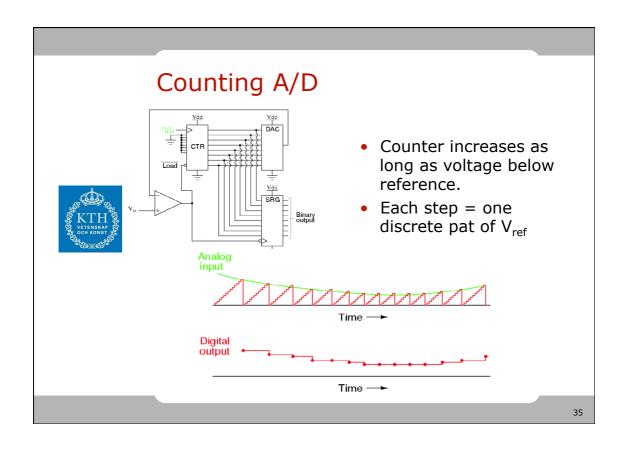
- Output from a transducer normally a current source
- E.g. 4-20 mA as a function of input

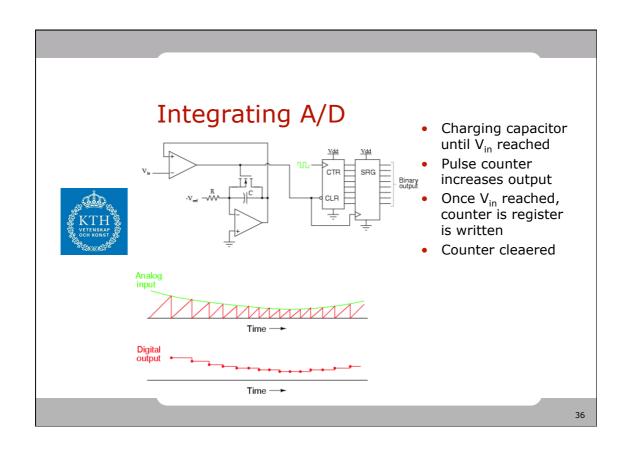


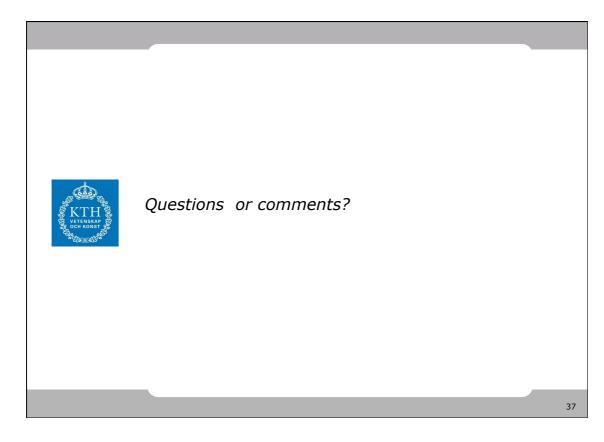





# A/D - Quantization





- Base circuit is the comparator
- If Input > Vref output = V+
- If Input < Vref = Output = V-

33

# Flash ADC Simple concept Fast Losses increase Several comparators needed Low resultion





