Homework \# 2

Numbers below refer to problems in Horn, Johnson "Matrix analysis." A number 1.1.P. 2 refers to Problem 2 in Section 1.1.

1. (1.0.P.2) Assume that $A^{T}=A \in M_{n}(R)$ is symmetric. Show that $\max \left\{x^{T} A x: x^{T} x=1, x \in \mathbb{R}^{n}\right\}$ is the largest real eigenvalue of A.
2. (1.1.P.1) Suppose $A \in M_{n}$ is nonsingular. For each $\lambda \in \sigma(A)$, show that $\lambda^{-1} \in \sigma\left(A^{-1}\right)$. If $A x=\lambda x$ and $x \neq 0$, show that $A^{-1} x=\lambda^{-1} x$.
3. (1.1.P.5) Let $A \in M_{n}$ be idempotent, that is, $A^{2}=A$. Show that each eigenvalue of A is either 0 or 1 . Explain why I is the only nonsingular idempotent matrix.
4. (1.1.P.6) Show that all eigenvalues of a nilpotent matrix are 0 . Give an example of a nonzero nilpotent matrix. Explain why 0 is the only nilpotent idempotent matrix.
5. (1.2.P.2) For matrices $A \in M_{m, n}$ and $B \in M_{n, m}$, show by direct calculation that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. For any $A \in M_{n}$ and nonsingular $S \in M_{n}$, deduce that $\operatorname{tr}\left(S^{-1} A S\right)=\operatorname{tr}(A)$. Use multiplicativity of the determinant function to show that $\operatorname{det}\left(S^{-1} A S\right)=\operatorname{det}(A)$.
Conclude that both the trace and the determinant are similarity invariant on M_{n}.
6. (1.3.P.4, approx. 1.3.P. 5 in old book) If $A \in M_{n}$ has distinct eigenvalues $\alpha_{1}, \ldots, \alpha_{n}$ and commutes with a given matrix $B \in M_{n}$, show that B is diagonalizable and that there is a polynomial $p(t)$ of degree at most $n-1$, such that $B=p(A)$.
7. (1.3.P.7) A matrix $A \in M_{n}$ is a square root of $B \in M_{n}$ if $A^{2}=B$. Show that every diagonalizable $B \in M_{n}$ has a square root. Does $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ have a square root? Why?
8. (1.4.P.1) Let nonzero vectors $x, y \in M_{n}$ be given, let $A=x y^{*}$ and let $\lambda=y^{*} x$. Show that
(a) λ is an eigenvalue of A;
(b) x is a right and y is a left eigenvector of A associated with λ;
(c) if $\lambda \neq 0$, then it is the only nonzero eigenvalue of A (algebraic multiplicity $=1$).

Explain why any vector that is orthogonal to y is in the null space of A. What is the geometric multiplicity of the eigenvalue 0 ? Explain why A is diagonalizable if and only if $y^{*} x \neq 0$.
9. (1.4.P.7) In this problem we outline a simple version of the power method for finding the largest modulus eigenvalue and an associated eigenvector of $A \in M_{n}$. Suppose that $A \in M_{n}$ has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and that there is exactly one eigenvalue λ_{n} of maximum modulus $\rho(A)$. If $x^{(0)} \in \mathbb{C}^{n}$ is not orthogonal to a left eigenvector associated with λ_{n}, show that the sequence

$$
x^{(k+1)}=\frac{1}{\sqrt{x^{(k) *} x^{(k)}}} A x^{(k)}, \quad k=0,1,2, \ldots
$$

converges to an eigenvector of A, and the ratios of a given nonzero entry in the vectors $A x^{(k)}$ and $x^{(k)}$ converge to λ_{n}.
10. (1.4.P.8) As a continuation of the previous exercise, further eigenvalues (and eigenvectors) of A can be calculated by combining the power method with a deflation that delivers a square matrix of size one smaller, whose spectrum (with multiplicities) contains all but one eigenvalue of A. Let $S \in M_{n}$ be nonsingular and have as its first column an eigenvector $y^{(n)}$ associated with eigenvalue λ_{n}. Show that $S^{-1} A S=\left[\begin{array}{cc}\lambda_{n} & * \\ 0 & B\end{array}\right]$ and the eigenvalues of $B \in M_{n-1}$ are $\lambda_{1}, \ldots, \lambda_{n-1}$. Another eigenvalue may be calculated from B and the deflation can be repeated until all eigenvalues have been found.

