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Homework #4

Numbers below refer to problems in Horn, Johnson “Matrix analysis.” A number
1.1.P.2 refers to Problem 2 in Section 1.1.

1. (4.1.P19) Let A ∈ Mn be a projection (A2 = A). One says that A is a
Hermitian projection if A is Hermitian and that A is an orthogonal projection
if the range of A is orthogonal to its null space. Use the basic properties of
Hermitian matrices to show that A is a Hermitian projection if and only if
it is an orthogonal projection.

Hint: x = (I−A)x+Ax is a sum of vectors in the null space and range of A. If
the null space is orthogonal to the range, then x∗Ax = ((I−A)x+Ax))∗Ax =
x(A∗A)x is real for all x.

2. Prove that the formulation of Courant-Fischer’s max-min theorem shown in
the lecture slides (Theorem 4.2.6 in the 2nd edition of the book) is equivalent
to

λk = min
w1,...,wn−k

max
x 6=0

x⊥w1,...,wn−k

x∗Ax

x∗x

λk = max
w1,...,wk−1

min
x 6=0

x⊥w1,...,wk−1

x∗Ax

x∗x

where wi, x ∈ Cn and the vectors {wi} are allowed to be linearly dependent.

3. (4.3.P4, 4.3.P14 in the old edition) If A,B ∈ Mn are Hermitian and their
eigenvalues are arranged in nondecreasing order, explain why λi(A + B) ≤
min{λj(A) + λk(B) : j + k = i+ n}.

4. (4.4.P2) Provide details for the following derivation of the Autonne-Takagi
factorization, using real valued representations. Let A ∈ Mn be symmetric.
If A is singular and rankA = r, it is unitarily congruent to A′⊕0n−r, in which
A′ ∈Mr is non-singular and symmetric (no need to prove this step). Assume
therefore WLOG that A is nonsingular. Let A = A1 + iA2 with A1, A2 real

and let x, y ∈ Rn. Consider the real representation R2(A) =

[
A1 A2

A2 −A1

]
, in

which A1, A2 and R2(A) are symmetric. Show that

(a) R2(A) is nonsingular.

(b) R2(A)

[
x
−y

]
= λ

[
x
−y

]
if and only if R2(A)

[
x
−y

]
= −λ

[
x
−y

]
, so the

eigenvalues of R2(A) appear in ± pairs.



(c) Let

[
x1
−y1

]
, . . . ,

[
xn
−yn

]
be orthonormal eigenvectors of R2(A) associated

with its positive eigenvalues λ1, . . . , λn, let X =
[
x1 . . . xn

]
, Y =[

y1 . . . yn
]
, Σ = diag(λ1, . . . , λn), V =

[
X Y
−Y X

]
and Λ = Σ⊕ (−Σ).

Then V is real orthogonal and R2(A) = V ΛV T . Let U = X − iY .
Explain why U is unitary and show that UΣUT = A.

5. a) Let α = [αi] ∈ Rn and β = [βi], where β1 = · · · = βn = 1
n

∑
αi. Show

that α majorizes β.

b) [Optional, only the solution to a) is considered in the grading] Let Λ =
diag(α1, . . . , αn). Try to find a unitary matrix U ∈Mn such that all diag-
onal elements of UΛU∗ are equal. Note that this is a simple special case
of Theorem 4.3.48. However, in this special case, it is easy to determine
a matrix U that works for all α (in general, U will have to depend on the
two vectors).

6. (4.5.P8) Let A, S ∈ Mn with A Hermitian and S nonsingular. Let the
eigenvalues of A and SAS∗ be arranged in nondecreasing order. Let λk(A)
be a nonzero eigenvalue. Deduce the relative eigenvalue perturbation bound
|λk(SAS∗)− λk(A)|/|λk(A)| ≤ ρ(I − SS∗) from Ostrowski’s theorem. What
does this say if S is unitary? If S is “close to unitary”?

7. Consider the quadratic form Q(x, y, z) = x2 + 4xy + 2xz + 2y2 + 8yz − z2
in the real valued variables x, y, z. One way to complete the squares is
Q(x, y, z) = (x+2y+z)2−2(y−z)2. Show that this expression can be written

as Q(x, y, z) = vTST diag(1,−2, 0)Sv where v =

xy
z

 and S =

1 2 1
0 1 −1
∗ ∗ ∗


(the last row is arbitrary).

Determine at least one alternative way to complete the squares. Use Sylvester’s
law of inertia to show that you will always get exactly one positive squared
term and one negative squared term (and no non-zero third term), no matter
how you complete the squares.

8. Let A = A∗ ∈Mn be a positive definite matrix (λi(A) > 0). Show that

log det(A)− Tr(A)

is maximized by A = I.


