LECTURE 4: OUTLINE

e Chapter 4: Hermitian and symmetric matrices, Congruence
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LECTURE 4: HERMITIAN MATRICES

Def: A matrix A = [a;;] € M, is Hermitianif A = A*.
A'is skew-Hermitian if A = —A*.

Simple observations:
1. If A is Hermitian, then A* and A~ are Hermitian.

2. A+ A* and AA* are Hermitian and A — A* is skew-Hermitian for all
Ae M,

3. Any A € M, can be decomposed uniquelyas A = B +iC' = B+ D
where B, C' are Hermitian and D skew-Hermitian. In fact

1 1
B=3(A+A") D=iC= (A= A)

4. A Hermitian matrix in M,, is completely described by n? real valued
parameters.
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HERMITIAN MATRICES CONT’D

A'is Hermitian iff
e r*Azisreal forallx € C"
e A is normal with real eigenvalues
e S*AS is Hermitian for all S € M,

All eigenvalues of a Hermitian matrix are real and it has a complete set of
orthonormal eigenvectors (the last fact follows as a special case of the spectral

theorem for normal matrices).

Thm (spectral): A € M,, is Hermitian iff it is unitarily diagonalizable to a real
diagonal matrix. A matrix A is real symmetric iff it can be diagonalized by a real
orthogonal matrix to a real diagonal matrix.
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COMMUTATION OF HERMITIAN MATRICES

Let F be a family of Hermitian matrices. Then all A € F are simultaneously
unitarily diagonalizable iff AB = BAforall A, B € F.
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POSITIVE DEFINITENESS

A Hermitian matrix A € M, is

Positive definite if t* Ax > O forallx € C", x # 0.
Positive semidefinite if z* Az > O forallz € C", x # 0.
Negative definite if 2*Ax < Oforallz € C", x # 0.
Negative semidefinite if z* Az < Oforallz € C™, x # 0.
Indefinite if there are y, z € C" with y* Ay < 0 < z*Az.

Much more in positive (semi)definiteness in Chapter 7
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VARIATIONAL CHARACTERIZATION OF EIGENVALUES

Let A € M,, be Hermitian with eigenvalues A1 < -+ - < \,,.
Thm (Rayleigh-Ritz):

¥
x*Ax
A = max = max x"Ax
z#£0 T*T r*r=1

Thm (Courant-Fischer): Let S denote a subspace of C™. Then,

. x* Az

A = min max
{S:dim[S]=k} z€S x*X

z#0

k= max min
{S:dim[S]=n—k+1} z€S x*T
x#0
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APPLICATIONS OF C-F THM

Thm: If A, B € M, are Hermitian, thenif j +k > n + 1
Njikon(A+ B) <\ (A) + M(B)
andifj+k<n+1

Aj(A) + Ak(B) < Ajpr—1(A+ B)
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APPLICATIONS CONT'D

Thm: If A, B € M, are Hermitian, then

/\k(A) + )‘1(3) < )\k(A+ B) < /\k(A) + )\n(B)

Interlacing theorem: Let 2 € C™ and A € M, be Hermitian. Then, for
k=1,2,...,n—1:

/\k(A + ZZ*) S )\k+1(A) S )\k+1(A + ZZ*)
Ae(A) € A(A+ 22) < A (A)

Ae(A—22") < A(A) < A1 (A — 227)
Ak(A) € Apy1(A — 227) < Mga (4)
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APPLICATIONS CONT’D

Interlacing theorem for bordered matrices:
Let A € M,, be Hermitian, y € C™, a € R and define

. Ay

Thenwith \; € 0(A) and ; € o(A)

M <M<
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THE POINCARE SEPARATION THEOREM

Let A € M, be Hermitian, let U € M,, , be a matrix with 7 < 7 orthonormal
columns and define B, = U* AU. Then

)\k‘(A) < )\k(Br) < )\k+n7'r'(A); k=1,2,...,r

Application:

v [r]m[}l_]r Tr(U*AU) Z)\k

v [IJI}P[,JX_ . Tr(U*AU) Z)‘k‘”’ -

Note that equality is obtained by choosing the columns of U as suitable
eigenvectors of A.
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GENERALIZED RAYLEIGH QUOTIENTS

Let A € M, be Hermitian and B € M,, be Hermitian positive definite. Consider
the following generalized eigenvalue problem

Az = \Bx

with eigenvalues Ay < --- < \,,. Then,

r* Az . N
A1 = min = min z"Ax
2#0 r*Bxr  2*Bz>1
¥ Ax
A, = ma = max x Az
z;éO 2*Br z* Bx<1

Solve the generalized eigenvalue problem in Matlab using
[E, Lambdal=eig (A, B);

Note: Elements of Lambda not sorted.
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MAJORIZATION

Def: Let v = [ov;] € R™ and 3 = [3;] € R™ with sorted versions,
1 < Qjy <-- < (&7 andﬁml < Bmz << ﬂrn,n-

forallk = 1,2,...,n, then the vector 8 majorizes the vector c.

Note: The notation is not standardized, some texts (including 1st edition of
Horn&Johnson) use the opposite definition.
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MAJORIZATION CONT’D

Thm: Let A € M, be Hermitian. The vector of eigenvalues majorizes the vector of
diagonal elements.

Converse thm: If the vector A € R™ majorizes the vector a € R™ then there exists
a real symmetric matrix A € M, (R) with a; as diagonal elements and \; as

eigenvalues.

Thm: Let A, B € M,, be Hermitian and let A(A) be the sorted vector of
eigenvalues of A etc. The vector A(A) + A(B) majorizes the vector \(A + B) .
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COMPLEX SYMMETRIC MATRICES

Autonne-Takagi factorization: If A € M, is symmetric, then A = USXU™'. Here,
U € M,, and unitary, ¥ = diag{o1,...,0,} is real and nonnegative. The
columns of U can be taken as an orthonormal set of eigenvectors to AA and ojis
the square root of an eigenvalue of AA.

Thm: Every matrix A € M, is similar to a symmetric matrix.

Thm: Let A € M,,. There exist a nonsingular matrix S and a unitary matrix U such

that (US)A(US) ™" is a diagonal matrix with nonnegative elements.
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CONGRUENCE

Def: Let A, B € M,, and S a nonsingular matrix.
It B = SAS*, then B is *-congruent to A.
If B =SAST, then Bis T-congruent to A.

Both congruence relations induce equivalence classes:
1. Alis congruentto A
2. If Ais congruent to B, then B is congruent to A.

3. If Ais congruentto B and B is congruent to C', then A is congruent to C'.
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INERTIA

Def: Let A € M, be Hermitian. The inertia of A is the ordered triple
i(A) = (i+(A4),i-(A4),i0(4))

where the entries correspond to the number of positive, negative and zero
eigenvalues of A, respectively.

Note that the rank of A equals i1 (A) 4+ i_(A).

The signature of Ais i4(A) —i_(A).
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CANONICAL FORM/SYLVESTER’S LAW OF INERTIA

If A € M, is Hermitian, then we can decompose it as
A= SI(A)S*
where S'is nonsingular and I (A) is the inertia matrix

I(A)=diag(l ...1 —=1... =10...0)

Thm (Syl): Let A, B € M,, be Hermitian. Then A = S B.S™ for a nonsingular
matrix S € M, iff A and B have the same inertia.
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QUANTITATIVE INERTIA RESULT / T-CONGRUENCE

Thm: (Ostrowski) Let A, S € M,, where A is Hermitian. Let the eigenvalues be
arranged in nondecreasing order. For each k = 1, ..., n there exists a real
number 6, such that A1 (S.5*) < 6, < \,,(SS*) and

Ae(SAS*) = 01\ (A)

Thm: Let A, B € M, be symmetric matrices (real or complex). There is a
nonsingular matrix S € M,, such that A = SBST iff A and B have the same
rank.

More about diagonalization by congruence: Thm 4.5.17 (4.5.15 in old ed.)
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