
LECTURE 4: OUTLINE

• Chapter 4: Hermitian and symmetric matrices, Congruence
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LECTURE 4: HERMITIAN MATRICES

Def: A matrix A = [aij ] ∈ Mn is Hermitian if A = A∗.

A is skew-Hermitian if A = −A∗.

Simple observations:

1. If A is Hermitian, then Ak and A−1 are Hermitian.

2. A+A∗ and AA∗ are Hermitian and A−A∗ is skew-Hermitian for all

A ∈ Mn.

3. Any A ∈ Mn can be decomposed uniquely as A = B + iC = B +D

where B,C are Hermitian and D skew-Hermitian. In fact

B =
1

2
(A+A∗) D = iC =

1

2
(A−A∗)

4. A Hermitian matrix in Mn is completely described by n2 real valued

parameters.
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HERMITIAN MATRICES CONT’D

A is Hermitian iff

• x∗Ax is real for all x ∈ C
n

• A is normal with real eigenvalues

• S∗AS is Hermitian for all S ∈ Mn

All eigenvalues of a Hermitian matrix are real and it has a complete set of

orthonormal eigenvectors (the last fact follows as a special case of the spectral

theorem for normal matrices).

Thm (spectral): A ∈ Mn is Hermitian iff it is unitarily diagonalizable to a real

diagonal matrix. A matrix A is real symmetric iff it can be diagonalized by a real

orthogonal matrix to a real diagonal matrix.
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COMMUTATION OF HERMITIAN MATRICES

Let F be a family of Hermitian matrices. Then all A ∈ F are simultaneously

unitarily diagonalizable iff AB = BA for all A,B ∈ F .
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POSITIVE DEFINITENESS

A Hermitian matrix A ∈ Mn is

Positive definite if x∗Ax > 0 for all x ∈ C
n, x 6= 0.

Positive semidefinite if x∗Ax ≥ 0 for all x ∈ C
n, x 6= 0.

Negative definite if x∗Ax < 0 for all x ∈ C
n, x 6= 0.

Negative semidefinite if x∗Ax ≤ 0 for all x ∈ C
n, x 6= 0.

Indefinite if there are y, z ∈ C
n with y∗Ay < 0 < z∗Az.

Much more in positive (semi)definiteness in Chapter 7
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VARIATIONAL CHARACTERIZATION OF EIGENVALUES

Let A ∈ Mn be Hermitian with eigenvalues λ1 ≤ · · · ≤ λn.

Thm (Rayleigh-Ritz):

λ1 = min
x 6=0

x∗Ax

x∗x
= min

x∗x=1
x∗Ax

λn = max
x 6=0

x∗Ax

x∗x
= max

x∗x=1
x∗Ax

Thm (Courant-Fischer): Let S denote a subspace of Cn. Then,

λk = min
{S:dim[S]=k}

max
x∈S
x 6=0

x∗Ax

x∗x

λk = max
{S:dim[S]=n−k+1}

min
x∈S
x 6=0

x∗Ax

x∗x
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APPLICATIONS OF C-F THM

Thm: If A,B ∈ Mn are Hermitian, then if j + k ≥ n+ 1

λj+k−n(A+B) ≤ λj(A) + λk(B)

and if j + k ≤ n+ 1

λj(A) + λk(B) ≤ λj+k−1(A+B)
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APPLICATIONS CONT’D

Thm: If A,B ∈ Mn are Hermitian, then

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B)

Interlacing theorem: Let z ∈ C
n and A ∈ Mn be Hermitian. Then, for

k = 1, 2, . . . , n− 1:

λk(A+ zz∗) ≤ λk+1(A) ≤ λk+1(A+ zz∗)

λk(A) ≤ λk(A+ zz∗) ≤ λk+1(A)

λk(A− zz∗) ≤ λk(A) ≤ λk+1(A− zz∗)

λk(A) ≤ λk+1(A− zz∗) ≤ λk+1(A)
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APPLICATIONS CONT’D

Interlacing theorem for bordered matrices:

Let A ∈ Mn be Hermitian, y ∈ C
n, a ∈ R and define

Â =





A y

y∗ a





Then with λi ∈ σ(A) and λ̂i ∈ σ(Â)

λ̂1 ≤ λ1 ≤ λ̂2 ≤ · · · ≤ λ̂n ≤ λn ≤ λ̂n+1
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THE POINCARÉ SEPARATION THEOREM

Let A ∈ Mn be Hermitian, let U ∈ Mn,r be a matrix with r ≤ n orthonormal

columns and define Br = U∗AU . Then

λk(A) ≤ λk(Br) ≤ λk+n−r(A); k = 1, 2, . . . , r

Application:

min
U, U∗U=Ir

Tr(U∗AU) =
r

∑

k=1

λk(A)

max
U, U∗U=Ir

Tr(U∗AU) =
r

∑

k=1

λk+n−r(A)

Note that equality is obtained by choosing the columns of U as suitable

eigenvectors of A.
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GENERALIZED RAYLEIGH QUOTIENTS

Let A ∈ Mn be Hermitian and B ∈ Mn be Hermitian positive definite. Consider

the following generalized eigenvalue problem

Ax = λBx

with eigenvalues λ1 ≤ · · · ≤ λn. Then,

λ1 = min
x 6=0

x∗Ax

x∗Bx
= min

x∗Bx≥1
x∗Ax

λn = max
x 6=0

x∗Ax

x∗Bx
= max

x∗Bx≤1
x∗Ax

Solve the generalized eigenvalue problem in Matlab using

[E,Lambda]=eig(A,B);

Note: Elements of Lambda not sorted.
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MAJORIZATION

Def: Let α = [αi] ∈ R
n and β = [βi] ∈ R

n with sorted versions,

αj1 ≤ αj2 ≤ · · · ≤ αjn and βm1
≤ βm2

≤ · · · ≤ βmn
.

If
n
∑

1

αi =

n
∑

1

βi

and
k

∑

i=1

βmi
≤

k
∑

i=1

αji

for all k = 1, 2, . . . , n, then the vector β majorizes the vector α.

Note: The notation is not standardized, some texts (including 1st edition of

Horn&Johnson) use the opposite definition.
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MAJORIZATION CONT’D

Thm: Let A ∈ Mn be Hermitian. The vector of eigenvalues majorizes the vector of

diagonal elements.

Converse thm: If the vector λ ∈ R
n majorizes the vector a ∈ R

n then there exists

a real symmetric matrix A ∈ Mn(R) with ai as diagonal elements and λi as

eigenvalues.

Thm: Let A,B ∈ Mn be Hermitian and let λ(A) be the sorted vector of

eigenvalues of A etc. The vector λ(A) + λ(B) majorizes the vector λ(A+B) .
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COMPLEX SYMMETRIC MATRICES

Autonne-Takagi factorization: If A ∈ Mn is symmetric, then A = UΣUT . Here,

U ∈ Mn and unitary, Σ = diag{σ1, . . . , σn} is real and nonnegative. The

columns of U can be taken as an orthonormal set of eigenvectors to AĀ and σi is

the square root of an eigenvalue of AĀ.

Thm: Every matrix A ∈ Mn is similar to a symmetric matrix.

Thm: Let A ∈ Mn. There exist a nonsingular matrix S and a unitary matrix U such

that (US)A(ŪS)−1 is a diagonal matrix with nonnegative elements.
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CONGRUENCE

Def: Let A,B ∈ Mn and S a nonsingular matrix.

If B = SAS∗, then B is *-congruent to A.

If B = SAST , then B is T -congruent to A.

Both congruence relations induce equivalence classes:

1. A is congruent to A

2. If A is congruent to B, then B is congruent to A.

3. If A is congruent to B and B is congruent to C , then A is congruent to C .
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INERTIA

Def: Let A ∈ Mn be Hermitian. The inertia of A is the ordered triple

i(A) = (i+(A), i−(A), i0(A))

where the entries correspond to the number of positive, negative and zero

eigenvalues of A, respectively.

Note that the rank of A equals i+(A) + i−(A).

The signature of A is i+(A)− i−(A).
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CANONICAL FORM/SYLVESTER’S LAW OF INERTIA

If A ∈ Mn is Hermitian, then we can decompose it as

A = SI(A)S∗

where S is nonsingular and I(A) is the inertia matrix

I(A) = diag(1 . . . 1 − 1 . . . − 1 0 . . . 0)

Thm (Syl): Let A,B ∈ Mn be Hermitian. Then A = SBS∗ for a nonsingular

matrix S ∈ Mn iff A and B have the same inertia.
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QUANTITATIVE INERTIA RESULT / T -CONGRUENCE

Thm: (Ostrowski) Let A,S ∈ Mn where A is Hermitian. Let the eigenvalues be

arranged in nondecreasing order. For each k = 1, . . . , n there exists a real

number θk such that λ1(SS
∗) ≤ θk ≤ λn(SS

∗) and

λk(SAS
∗) = θkλk(A)

Thm: Let A,B ∈ Mn be symmetric matrices (real or complex). There is a

nonsingular matrix S ∈ Mn such that A = SBST iff A and B have the same

rank.

More about diagonalization by congruence: Thm 4.5.17 (4.5.15 in old ed.)
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