LECTURE 4: OUTLINE

• Chapter 4: Hermitian and symmetric matrices, Congruence

KTH – Signal Processing

Magnus Jansson/Mats Bengtssor

LECTURE 4: HERMITIAN MATRICES

1

Def: A matrix $A = [a_{ij}] \in M_n$ is Hermitian if $A = A^*$. A is skew-Hermitian if $A = -A^*$.

Simple observations:

- 1. If A is Hermitian, then A^k and A^{-1} are Hermitian.
- 2. $A + A^*$ and AA^* are Hermitian and $A A^*$ is skew-Hermitian for all $A \in M_n$.
- 3. Any $A \in M_n$ can be decomposed uniquely as A = B + iC = B + D where B, C are Hermitian and D skew-Hermitian. In fact

$$B = \frac{1}{2}(A + A^*)$$
 $D = iC = \frac{1}{2}(A - A^*)$

4. A Hermitian matrix in ${\cal M}_n$ is completely described by n^2 real valued parameters.

2

 \boldsymbol{A} is Hermitian iff

- x^*Ax is real for all $x \in \mathbf{C}^n$
- A is normal with real eigenvalues

All eigenvalues of a Hermitian matrix are real and it has a complete set of orthonormal eigenvectors (the last fact follows as a special case of the spectral theorem for normal matrices).

HERMITIAN MATRICES CONT'D

Thm (spectral): $A \in M_n$ is Hermitian iff it is unitarily diagonalizable to a real diagonal matrix. A matrix A is real symmetric iff it can be diagonalized by a real orthogonal matrix to a real diagonal matrix.

3

KTH – Signal Processing

Magnus Jansson/Mats Bengtsson

COMMUTATION OF HERMITIAN MATRICES

Let \mathcal{F} be a family of Hermitian matrices. Then all $A \in \mathcal{F}$ are simultaneously unitarily diagonalizable iff AB = BA for all $A, B \in \mathcal{F}$.

4

Magnus Jansson/Mats Bengtsson

APPLICATIONS OF C-F THM POSITIVE DEFINITENESS Thm: If $A, B \in M_n$ are Hermitian, then if i + k > n + 1 $\lambda_{i+k-n}(A+B) < \lambda_i(A) + \lambda_k(B)$ A Hermitian matrix $A \in M_n$ is and if $j + k \le n + 1$ Positive definite if $x^*Ax > 0$ for all $x \in \mathbb{C}^n$, $x \neq 0$. $\lambda_i(A) + \lambda_k(B) < \lambda_{i+k-1}(A+B)$ Positive semidefinite if $x^*Ax > 0$ for all $x \in \mathbb{C}^n$, $x \neq 0$. Negative definite if $x^*Ax < 0$ for all $x \in \mathbb{C}^n$, $x \neq 0$. Negative semidefinite if $x^*Ax \leq 0$ for all $x \in \mathbb{C}^n$, $x \neq 0$. **Indefinite** if there are $y, z \in \mathbb{C}^n$ with $y^*Ay < 0 < z^*Az$. Much more in positive (semi)definiteness in Chapter 7 KTH - Signal Processing 5 Magnus Jansson/Mats Bengtsson KTH - Signal Processing 7 Magnus Jansson/Mats Bengtsson **APPLICATIONS CONT'D** VARIATIONAL CHARACTERIZATION OF EIGENVALUES Thm: If $A, B \in M_n$ are Hermitian, then Let $A \in M_n$ be Hermitian with eigenvalues $\lambda_1 < \cdots < \lambda_n$. Thm (Rayleigh-Ritz): $\lambda_k(A) + \lambda_1(B) < \lambda_k(A+B) < \lambda_k(A) + \lambda_n(B)$ $\lambda_1 = \min_{x \neq 0} \frac{x^* A x}{x^* x} = \min_{x^* x = 1} x^* A x$ Interlacing theorem: Let $z \in \mathbf{C}^n$ and $A \in M_n$ be Hermitian. Then, for $\lambda_n = \max_{x \neq 0} \frac{x^* A x}{x^* x} = \max_{x^* x = 1} x^* A x$ $k = 1, 2, \ldots, n - 1$: Thm (Courant-Fischer): Let S denote a subspace of \mathbb{C}^n . Then, $\lambda_k = \min_{\{S: \dim[S]=k\}} \max_{\substack{x \in S \\ x \neq 0}} \frac{x^* A x}{x^* x}$ $\lambda_k(A + zz^*) < \lambda_{k+1}(A) < \lambda_{k+1}(A + zz^*)$ $\lambda_k(A) < \lambda_k(A + zz^*) < \lambda_{k+1}(A)$ $\lambda_k = \max_{\substack{\{S: \dim[S]=n-k+1\}\\ x \neq 0}} \min_{\substack{x \in S \\ x \neq 0}} \frac{x^* A x}{x^* x}$ $\lambda_k(A - zz^*) < \lambda_k(A) < \lambda_{k+1}(A - zz^*)$ $\lambda_k(A) < \lambda_{k+1}(A - zz^*) < \lambda_{k+1}(A)$ KTH - Signal Processing Magnus Jansson/Mats Bengtssor KTH - Signal Processing Magnus Jansson/Mats Bengtsson 6 8

APPLICATIONS CONT'D

KTH - Signal Processing

10

Magnus Jansson/Mats Bengtssor

KTH - Signal Processing

12

Magnus Jansson/Mats Bengtsson

Magnus Jansson/Mats Bengtsson

GENERALIZED RAYLEIGH QUOTIENTS

MAJORIZATION CONT'D

Thm: Let $A \in {\cal M}_n$ be Hermitian. The vector of eigenvalues majorizes the vector of diagonal elements.

Converse thm: If the vector $\lambda \in \mathbf{R}^n$ majorizes the vector $a \in \mathbf{R}^n$ then there exists a real symmetric matrix $A \in M_n(\mathbf{R})$ with a_i as diagonal elements and λ_i as eigenvalues.

Thm: Let $A,B\in M_n$ be Hermitian and let $\lambda(A)$ be the sorted vector of eigenvalues of A etc. The vector $\lambda(A)+\lambda(B)$ majorizes the vector $\lambda(A+B)$.

13

KTH – Signal Processing

Magnus Jansson/Mats Bengtsson

COMPLEX SYMMETRIC MATRICES

Autonne-Takagi factorization: If $A \in M_n$ is symmetric, then $A = U\Sigma U^T$. Here, $U \in M_n$ and unitary, $\Sigma = diag\{\sigma_1, \ldots, \sigma_n\}$ is real and nonnegative. The columns of U can be taken as an orthonormal set of eigenvectors to $A\bar{A}$ and σ_i is the square root of an eigenvalue of $A\bar{A}$.

Thm: Every matrix $A \in M_n$ is similar to a symmetric matrix.

Thm: Let $A \in M_n$. There exist a nonsingular matrix S and a unitary matrix U such that $(US)A(\bar{U}S)^{-1}$ is a diagonal matrix with nonnegative elements.

CONGRUENCE

 $\begin{array}{l} \textbf{Def:} \ \text{Let} \ A, B \in M_n \ \text{and} \ S \ \text{a nonsingular matrix.} \\ \text{If} \ B = SAS^*, \text{then} \ B \ \text{is} \ ^*\text{-congruent to} \ A. \\ \text{If} \ B = SAS^T, \text{then} \ B \ \text{is} \ ^T\text{-congruent to} \ A. \end{array}$

Both congruence relations induce equivalence classes:

1. A is congruent to A

2. If A is congruent to B, then B is congruent to A.

3. If A is congruent to B and B is congruent to C, then A is congruent to C.

$\mathsf{INERTIA}$ Def: Let $A\in M_n$ be Hermitian. The *inertia* of A is the ordered triple $i(A)=(i_+(A),i_-(A),i_0(A))$

where the entries correspond to the number of positive, negative and zero eigenvalues of *A*, respectively.

Note that the rank of A equals $i_+(A) + i_-(A)$. The signature of A is $i_+(A) - i_-(A)$.

14

Magnus Jansson/Mats Bengtsson

KTH – Signal Processing

16

CANONICAL FORM/SYLVESTER'S LAW OF INERTIA

If $A \in M_n$ is Hermitian, then we can decompose it as

 $A = SI(A)S^*$

where S is nonsingular and ${\cal I}(A)$ is the $\mathit{inertia\ matrix}$

 $I(A) = diag(1 \dots 1 - 1 \dots - 1 0 \dots 0)$

Thm (Syl): Let $A,B\in M_n$ be Hermitian. Then $A=SBS^*$ for a nonsingular matrix $S\in M_n$ iff A and B have the same inertia.

17

Magnus Jansson/Mats Bengtsson

Quantitative Inertia Result / T -congruence

Thm: (Ostrowski) Let $A, S \in M_n$ where A is Hermitian. Let the eigenvalues be arranged in nondecreasing order. For each $k = 1, \ldots, n$ there exists a real number θ_k such that $\lambda_1(SS^*) \le \theta_k \le \lambda_n(SS^*)$ and

 $\lambda_k(SAS^*) = \theta_k \lambda_k(A)$

Thm: Let $A, B \in M_n$ be symmetric matrices (real or complex). There is a nonsingular matrix $S \in M_n$ such that $A = SBS^T$ iff A and B have the same rank.

More about diagonalization by congruence: Thm 4.5.17 (4.5.15 in old ed.)

18

Magnus Jansson/Mats Bengtsson