LECTURE 5:

NORMS FOR VECTORS AND MATRICES

Problem: Measure size of vector or matrix. What is "small" and what is "large"?

Problem: Measure distance between vectors or matrices. When are they "close together" or "far apart"?

Answers are given by norms.

Also: Tool to analyze convergence and stability of algorithms.

KTH – Signal Processing

Emil Björnson/Magnus Jansson/Mats Bengtsson

VECTOR NORMS

Definition: Let V be a vector space over a field \mathbf{F} (\mathbf{R} or \mathbf{C}). A function $|| \cdot || : V \to \mathbf{R}$ is a vector norm if for all $x, y \in V$

(1) $||x|| \ge 0$ nonnegative(1a) ||x|| = 0 iff x = 0positive(2) ||cx|| = |c| ||x|| for all $c \in \mathbf{F}$ homogeneous(3) $||x + y|| \le ||x|| + ||y||$ triangle inequality

A function not satisfying (1a) is called a vector *seminorm*.

Answers: Size of vector.

KTH – Signal Processing

Emil Björnson/Magnus Jansson/Mats Bengtsso

INNER PRODUCTS

Definition: Let *V* be a vector space over a field \mathbf{F} (\mathbf{R} or \mathbf{C}). A function $\langle \cdot, \cdot \rangle : V \times V \to \mathbf{F}$ is an inner product if for all $x, y, z \in V$,

1) $\langle x, x \rangle \geq 0$	nonnegative
a) $\langle x,x angle=0$ iff $x=0$	positive
2) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$	additive
3) $\langle cx,y angle=c\langle x,y angle$ for all $c\in{f F}$	homogeneous
4) $\langle x,y angle=\overline{\langle y,x angle}$	Hermitian property

Answers: "Angle" (distance)between vectors.

3

KTH – Signal Processing

(1

Emil Björnson/Magnus Jansson/Mats Bengtsson

CONNECTIONS BETWEEN NORM AND INNER PRODUCTS

Corollary: If $\langle \cdot, \cdot \rangle$ is an inner product, then $||x|| = (\langle x, x \rangle)^{1/2}$ is a vector norm.

Called: Vector norm derived from an inner product.

Satisfies parallelogram identity (Necessary and sufficient condition):

$\frac{1}{2}(||x+y||^2 + ||x-y||^2) = ||x||^2 + ||y||^2$

Theorem (Cauchy-Schwarz inequality):

4

 $|\langle x,y\rangle|^2 \leq \langle x,x\rangle \langle y,y\rangle$

We have equality iff x = cy for some $c \in \mathbf{F}$ (i.e., linearly dependent)

KTH – Signal Processing

Emil

EXAMPLES

The *Euclidean norm* (l_2) on \mathbb{C}^n :

$$||x||_2 = (|x_1|^2 + |x_2|^2 + \dots + |x_n|^2)^{1/2}$$

The sum norm (l_1) , also called one-norm or Manhattan norm:

$||x||_1 = |x_1| + |x_2| + \dots + |x_n|.$

The max norm (l_{∞}) :

$$||x||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

Only Euclidean norm derived from inner product.

5

KTH – Signal Processing

KTH

Emil Björnson/Magnus Jansson/Mats Bengtsson

UNIT BALLS FOR DIFFERENT NORMS

 $||x||_1 \le 1$

Shape of unit ball characterizes the norm.

 $||x||_2 \le 1$

Properties: Convex and compact (for finite dimension) around origin.

EXAMPLES CONT'D

The l_p -norm on \mathbb{C}^n is $(p \ge 1)$: $||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$ Norms may also be constructed from others, e.g.,: $||x|| = \max\{||x||_{p_1}, ||x||_{p_2}\}$ KTH or let nonsingular $T \in M_n$ and $|| \cdot ||$ be a given, then $||x||_T = ||Tx||.$ Norms on infinite-dimensional vector spaces (e.g., all continuous functions on an interval [a, b]): "similarly" defined (sums become integrals) KTH - Signal Processing 7 Emil Björnson/Magnus Jansson/Mats Bengtsson CONVERGENCE Assume: Vector space V over \mathbf{R} or \mathbf{C} . **Definition:** The sequence $\{x^{(k)}\}$ of vectors in V converges to $x \in V$ with respect to $|| \cdot ||$ iff $||x^{(k)} - x|| \to 0$ as $k \to \infty$. Infinite dimension:

- Sequence can converge in one norm, but not another.
- Important to state choice of norm.

CONVERGENCE: FINITE DIMENSION

Corollary: For any vector norms $|| \cdot ||_{\alpha}$ and $|| \cdot ||_{\beta}$ on a finite-dimensional V, there exists $0 \le C_m < C_M < \infty$ such that

 $C_m||x||_{\alpha} \le ||x||_{\beta} \le C_M||x||_{\alpha} \qquad \forall x \in V$

 $\textbf{Conclusion:} \text{ Convergence in one norm} \Rightarrow \text{convergence in all norms.}$

Note: Result also holds for pre-norms, without the triangle inequality.

Definition: Two norms are *equivalent* if convergence in one of the norms always implies convergence in the other.

Conclusion: All norms are equivalent in the finite dimensional case.

9

KTH – Signal Processing

Emil Björnson/Magnus Jansson/Mats Bengtsson

CONVERGENCE: CAUCHY SEQUENCE

Definition: A sequence $\{x^{(k)}\}$ in V is a Cauchy sequence with respect to $|| \cdot ||$ if for every $\epsilon > 0$ there is a $N_{\epsilon} > 0$ such that

$$||x^{(k_1)} - x^{(k_2)}|| \le \epsilon$$

for all $k_1, k_2 \ge N_{\epsilon}$.

Theorem: A sequence $\{x^{(k)}\}$ in a finite dimensional V converges to a vector in V iff it is a Cauchy sequence.

10

	DUAL NORMS			
	Definition: The dual norm of $\ \cdot\ $ is			
	$\ y\ ^D = \max_{x:\ x\ =1} \operatorname{Re} y^* x = \max_{x:\ x\ =1} y^* x = \max_{x \neq 0} \frac{ y^* x }{\ x\ }$			
	Examples: Norm Dual norm			
(KTH)	$\frac{\ \cdot\ _2}{\ \cdot\ _2} = \ \cdot\ _2$			
KTH Electrical Engineerin	$\ \cdot\ _1$ $\ \cdot\ _{\infty}$			
	$\ \cdot\ _{\infty}$ $\ \cdot\ _{1}$			
 Dual of dual norm is the original norm. 				
• Euclidean norm is its own dual.				
• Generalized Cauchy-Schwarz: $ y^*x \leq \ x\ \ y\ ^D$				
кт	TH – Signal Processing 11 Emil Björnson/Magnus Jansson/Mats Bengtsson			
VECTOR NORMS APPLIED TO MATRICES				
M_n is a vector space (of dimension n^2)				
Conclusion: We can apply vector norms to matrices.				
	Examples:			
(KTH)	The l_1 norm: $ A _1 = \sum_{i,j} a_{ij} .$			
KTH Electrical Engineerin	' The l_2 norm (Euclidean/Frobenius norm): $ A _2 = ig(\sum_{i,j} a_{ij} ^2ig)^{1/2}$			
The l_∞ norm: $ A _\infty = \max_{i,j} a_{ij} .$				

Observation: Matrices have certain properties (e.g., multiplication). May be useful to define particular *matrix norms*.

KTH – Signal Processing

12

MATRIX NORM AXIOMS

Definition: $||| \cdot ||| : M_n \to \mathbf{R}$ is a matrix norm if for all $A, B \in M_n$,

nonnegative	(1) $ A \ge 0$
positive	(1a) $ A = 0$ iff $A = 0$
homogeneous	(2) $ cA = c A $ for all $c \in {f C}$
triangle inequality	(3) $ A + B \le A + B $
submultiplicative	(4) $ AB \le A B $

Observations:

- All vector norms satisfy (1)-(3), some may satisfy (4).
- Generalized matrix norm if not satisfying (4).

13

KTH – Signa	I Processing
-------------	--------------

Emil Björnson/Magnus Jansson/Mats Bengtsson

WHICH VECTOR NORMS ARE MATRIX NORMS?

- $||A||_1$ and $||A||_2$ are matrix norms.
- $||A||_{\infty}$ is not a matrix norm (but a generalized matrix norm).

However, $|||A||| = n||A||_{\infty}$ is a matrix norm.

14

Definition: Let $||\cdot||$ be a vector norm on \mathbf{C}^n . The matrix norm

INDUCED MATRIX NORMS

$$|||A||| = \max_{||x||=1} ||Ax||$$

is induced by $|| \cdot ||$.

Properties of induced norms $||| \cdot |||$:

- |||I||| = 1.
- The only matrix norm N(A) with $N(A) \leq |||A|||$ for all $A \in M_n$ is $N(\cdot) = ||| \cdot |||.$

Last property called minimal matrix norm.

15

KTH – Signal Processing

Emil Björnson/Magnus Jansson/Mats Bengtsson

EXAMPLES

The maximum column sum (induced by l_1):

$$|||A|||_1 = \max_j \sum_i |a_{ij}|$$

The spectral norm (induced by l_2):

$|||A|||_2 = \max\{\sqrt{\lambda} : \lambda \in \sigma(A^*A)\}$

The maximum row sum (induced by l_{∞}):

$$|||A|||_{\infty} = \max_{i} \sum_{j} |a_{ij}|$$

KTH – Signal Processing

KTH – Signal Processing

16

APPLICATION: COMPUTING SPECTRAL RADIUS APPLICATION: POWER SERIES Recall: Spectral radius: $\rho(A) = \max\{|\lambda| : \lambda \in \sigma(A)\}.$ **Theorem:** $\sum_{k=0}^{\infty} a_k A^k$ converges if there is a matrix norm such that $\sum_{k=0}^{\infty} |a_k| |||A|||^k$ converges. Not a matrix norm, but very related. **Theorem:** For any matrix norm $||| \cdot |||$ and $A \in M_n$, **Corollary:** If |||A||| < 1 for some matrix norm, then I - A is $\rho(A) < |||A|||.$ invertible and KTH $(I-A)^{-1} = \sum_{k=0}^{\infty} A^k$ **Lemma:** For any $A \in M_n$ and $\epsilon > 0$, there is $||| \cdot |||$ such that $\rho(A) < |||A||| < \rho(A) + \epsilon$ Matrix extension of $(1-x)^{-1} = \sum_{k=0}^{\infty} x^k$ for |x| < 1. **Corollary:** For any matrix norm $||| \cdot |||$ and $A \in M_n$, Useful to compute "error" between A^{-1} and $(A + E)^{-1}$. $\rho(A) = \lim_{k \to \infty} |||A^k|||^{1/k}$ KTH - Signal Processing 17 Emil Björnson/Magnus Jansson/Mats Bengtssor KTH - Signal Processing Emil Björnson/Magnus Jansson/Mats Bengtsson 19 Application: Convergence of A^k UNITARILY INVARIANT AND CONDITION NUMBER **Definition:** A matrix norm is unitarily invariant if |||UAV||| = |||A|||**Lemma:** If there is a matrix norm with |||A||| < 1 then for all $A \in M_n$ and all unitary matrices $U, V \in M_n$. $\lim_{k \to \infty} A^k = 0.$ **Examples:** Frobenius norm $|| \cdot ||_2$ and spectral norm $||| \cdot |||_2$. Theorem: $\lim_{k\to\infty} A^k = 0$ iff $\rho(A) < 1$. Definition: Condition number for matrix inversion with respect to the Matrix extension of $\lim_{k\to\infty} x^k = 0$ iff |x| < 1. matrix norm $||| \cdot |||$ of nonsingular $A \in M_n$ is $\kappa(A) = |||A^{-1}||| |||A|||$ Frequently used in perturbation analysis in numerical linear algebra. **Observation:** $\kappa(A) \ge 1$ (from submultiplicative property). **Observation:** For unitarily invariant norms: $\kappa(UAV) = \kappa(A)$. KTH - Signal Processing Emil Björnson/Magnus Jansson/Mats Bengtsso KTH - Signal Processing Emil Björnson/Magnus Jansson/Mats Bengtsson 18 20