LECTURE 5

Norms for Vectors and matrices

Problem: Measure size of vector or matrix.
What is "small" and what is "large"?

Problem: Measure distance between vectors or matrices. When are they "close together" or "far apart"?

Answers are given by norms.

Also: Tool to analyze convergence and stability of algorithms.

VECTOR NORMS

Definition: Let V be a vector space over a field \mathbf{F} (\mathbf{R} or \mathbf{C}).
A function $\|\cdot\|: V \rightarrow \mathbf{R}$ is a vector norm if for all $x, y \in V$

| (1) $\\|x\\| \geq 0$ | nonnegative | | | | |
|---|---|---|---|---|---|---|---|
| (1a) $\\|x\\|=0$ iff $x=0$ | positive |
| (2) $\\|c x\\|=\|c\|\\|x\\|$ for all $c \in \mathbf{F}$ | homogeneous |
| (3) $\\|x+y\\| \leq\\|x\\|+\\|y\\|$ | triangle inequality |

A function not satisfying (1a) is called a vector seminorm.

Answers: Size of vector.

INNER PRODUCTS

Definition: Let V be a vector space over a field $\mathbf{F}(\mathbf{R}$ or $\mathbf{C})$. A function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbf{F}$ is an inner product if for all $x, y, z \in V$,
(1) $\langle x, x\rangle \geq 0$
nonnegative
(1a) $\langle x, x\rangle=0$ iff $x=0$ positive
(2) $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
additive
(3) $\langle c x, y\rangle=c\langle x, y\rangle$ for all $c \in \mathbf{F} \quad$ homogeneous
(4) $\langle x, y\rangle=\overline{\langle y, x\rangle}$ Hermitian property

Answers: "Angle" (distance)between vectors.
KTH - Signal Processing Emil Björnson/Magnus Jansson/Mats Bengtson

CONNECTIONS BETWEEN NORM AND INNER PRODUCTS

Corollary: If $\langle\cdot, \cdot\rangle$ is an inner product, then $\|x\|=(\langle x, x\rangle)^{1 / 2}$ is a vector norm.

Called: Vector norm derived from an inner product.
Satisfies parallelogram identity (Necessary and sufficient condition):

$$
\frac{1}{2}\left(\|x+y\|^{2}+\|x-y\|^{2}\right)=\|x\|^{2}+\|y\|^{2}
$$

Theorem (Cauchy-Schwarz inequality)

$$
|\langle x, y\rangle|^{2} \leq\langle x, x\rangle\langle y, y\rangle
$$

We have equality iff $x=c y$ for some $c \in \mathbf{F}$ (i.e., linearly dependent)

Examples

The Euclidean norm (l_{2}) on \mathbf{C}^{n} :

$$
\|x\|_{2}=\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2}\right)^{1 / 2}
$$

The sum norm (l_{1}), also called one-norm or Manhattan norm:

$$
\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|
$$

The max norm (l_{∞}):

$$
\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}
$$

Only Euclidean norm derived from inner product.

UNIT BALLS FOR DIFFERENT NORMS

Shape of unit ball characterizes the norm.

$\\|x\\|_{2} \leq 1$ x_{1}	$\sim^{\\|x\\|_{1} \leq 1}$
$\begin{aligned} & \\|x\\|_{\infty} \leq 1 \\ & x_{2} \leq 1 \\ & \square \\ & \square \end{aligned} x_{1} .$	$\\|x\\|_{\text {??? }} \leq 1$

Properties: Convex and compact (for finite dimension) around origin.

EXAMPLES CONT'D

The l_{p}-norm on \mathbf{C}^{n} is $(p \geq 1)$:

$$
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}
$$

Norms may also be constructed from others, e.g.,:

$$
\|x\|=\max \left\{\|x\|_{p_{1}},\|x\|_{p_{2}}\right\}
$$

or let nonsingular $T \in M_{n}$ and $\|\cdot\|$ be a given, then

$$
\|x\|_{T}=\|T x\|
$$

Norms on infinite-dimensional vector spaces (e.g., all continuous functions on an interval $[a, b]$): "similarly" defined (sums become integrals)

Emil Björnson/Magnus Jansson/Mats Bengtsson

Convergence

Assume: Vector space V over \mathbf{R} or \mathbf{C}.
Definition: The sequence $\left\{x^{(k)}\right\}$ of vectors in V converges to $x \in V$ with respect to $\|\cdot\|$ iff

$$
\left\|x^{(k)}-x\right\| \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

Infinite dimension:

- Sequence can converge in one norm, but not another.
- Important to state choice of norm.

Convergence: Finite dimension

Corollary: For any vector norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ on a finite-dimensional V, there exists $0 \leq C_{m}<C_{M}<\infty$ such that

$$
C_{m}\|x\|_{\alpha} \leq\|x\|_{\beta} \leq C_{M}\|x\|_{\alpha} \quad \forall x \in V
$$

Conclusion: Convergence in one norm \Rightarrow convergence in all norms.
Note: Result also holds for pre-norms, without the triangle inequality.
Definition: Two norms are equivalent if convergence in one of the norms always implies convergence in the other.

Conclusion: All norms are equivalent in the finite dimensional case.

CONVERGENCE: CAUCHY SEQUENCE

Definition: A sequence $\left\{x^{(k)}\right\}$ in V is a Cauchy sequence with respect to $\|\cdot\|$ if for every $\epsilon>0$ there is a $N_{\epsilon}>0$ such that

$$
\left\|x^{\left(k_{1}\right)}-x^{\left(k_{2}\right)}\right\| \leq \epsilon
$$

for all $k_{1}, k_{2} \geq N_{\epsilon}$.

Theorem: A sequence $\left\{x^{(k)}\right\}$ in a finite dimensional V converges to a vector in V iff it is a Cauchy sequence.

DUAL NORMS

Definition: The dual norm of $\|\cdot\|$ is

$$
\|y\|^{D}=\max _{x:\|x\|=1} \operatorname{Re} y^{*} x=\max _{x:\|x\|=1}\left|y^{*} x\right|=\max _{x \neq 0} \frac{\left|y^{*} x\right|}{\|x\|}
$$

\section*{(단)
 Examples: \quad| Norm | Dual norm |
| :--- | :--- |
| $\\|\cdot\\|_{2}$ | $\\|\cdot\\|_{2}$ |
 $\|\cdot\|_{1} \quad\|\cdot\|_{\infty}$}

- Dual of dual norm is the original norm.
- Euclidean norm is its own dual.
- Generalized Cauchy-Schwarz: $\left|y^{*} x\right| \leq\|x\|\|y\|^{D}$

KTH - Signal Processing
11
Emil Björnson/Magnus Jansson/Mats Bengtsson

VECTOR NORMS APPLIED TO MATRICES

M_{n} is a vector space (of dimension n^{2})
Conclusion: We can apply vector norms to matrices.

Examples:

The l_{1} norm: $\|A\|_{1}=\sum_{i, j}\left|a_{i j}\right|$.
The l_{2} norm (Euclidean/Frobenius norm): $\|A\|_{2}=\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{1 / 2}$. The l_{∞} norm: $\|A\|_{\infty}=\max _{i, j}\left|a_{i j}\right|$.

Observation: Matrices have certain properties (e.g., multiplication). May be useful to define particular matrix norms.

Matrix norm axioms

Definition: $\left\|\|\cdot\|\left|\mid: M_{n} \rightarrow \mathbf{R}\right.\right.$ is a matrix norm if for all $A, B \in M_{n}$,
(1) $|\|A \mid\| \geq 0$
nonnegative
(1a) $\mid\|A\| \|=0$ iff $A=0$ positive
(2) $|||c A|||=|c|| ||A|| |$ for all $c \in \mathbf{C}$
homogeneous
(3) $|||A+B\||\leq||A|\|+|||B| \|$ triangle inequality
(4) $|||A B||| \leq||A||| || | B| | \mid$ submultiplicative

Observations:

- All vector norms satisfy (1)-(3), some may satisfy (4).
- Generalized matrix norm if not satisfying (4).

Which Vector norms are matrix norms?
$\|A\|_{1}$ and $\|A\|_{2}$ are matrix norms.
$\|A\|_{\infty}$ is not a matrix norm (but a generalized matrix norm).
However, $\mid\|A\|\|=n\| A \|_{\infty}$ is a matrix norm.

Induced matrix norms

Definition: Let $\|\cdot\|$ be a vector norm on \mathbf{C}^{n}. The matrix norm

$$
\|A\|\left\|=\max _{\|x\|=1}\right\| A x \|
$$

is induced by \| $\|\|$.
Properties of induced norms ||| $\cdot||\mid$:

- $|||I| \|=1$.
- The only matrix norm $N(A)$ with $N(A) \leq\| \| A \| \mid$ for all $A \in M_{n}$ is $N(\cdot)=\| \| \cdot\| \|$.

Last property called minimal matrix norm.

KTH - Signal Processing 15
Emil Björnson/Magnus Jansson/Mats Bengtsson

EXAMPLES

The maximum column sum (induced by l_{1}):

$$
\left|\left\|A\left|\|_{1}=\max _{j} \sum_{i}\right| a_{i j} \mid\right.\right.
$$

The spectral norm (induced by l_{2}):

$$
\|A \mid\|_{2}=\max \left\{\sqrt{\lambda}: \lambda \in \sigma\left(A^{*} A\right)\right\}
$$

The maximum row sum (induced by l_{∞}):

$$
\||A|\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right|
$$

Application: Computing Spectral radius

Recall: Spectral radius: $\rho(A)=\max \{|\lambda|: \lambda \in \sigma(A)\}$
Not a matrix norm, but very related.
Theorem: For any matrix norm $|\|\cdot\||$ and $A \in M_{n}$,

$$
\rho(A) \leq\||A|\|
$$

Lemma: For any $A \in M_{n}$ and $\epsilon>0$, there is $\|\|\cdot\| \mid$ such that

$$
\rho(A) \leq\| \| A\| \| \leq \rho(A)+\epsilon
$$

Corollary: For any matrix norm $\left\|\|\cdot\| \mid\right.$ and $A \in M_{n}$,

$$
\rho(A)=\lim _{k \rightarrow \infty}\| \| A^{k}\| \|^{1 / k}
$$

KTH - Signal Processing
17
Emil Björnson/Magnus Jansson/Mats Bengtsson

Application: Convergence of A^{k}

Lemma: If there is a matrix norm with $|||A|||<1$ then
$\lim _{k \rightarrow \infty} A^{k}=0$.
Theorem: $\lim _{k \rightarrow \infty} A^{k}=0$ iff $\rho(A)<1$.
Matrix extension of $\lim _{k \rightarrow \infty} x^{k}=0$ iff $|x|<1$.

Application: Power series

Theorem: $\sum_{k=0}^{\infty} a_{k} A^{k}$ converges if there is a matrix norm such that $\sum_{k=0}^{\infty}\left|a_{k}\right|| ||A| \|^{k}$ converges.

Corollary: If $|||A|||<1$ for some matrix norm, then $I-A$ is invertible and

$$
(I-A)^{-1}=\sum_{k=0}^{\infty} A^{k}
$$

Matrix extension of $(1-x)^{-1}=\sum_{k=0}^{\infty} x^{k}$ for $|x|<1$.
Useful to compute "error" between A^{-1} and $(A+E)^{-1}$.

KTH - Signal Processing	19	Emil Björnson/Magnus Jansson/Mats Bengtson

Unitarily invariant and condition number
Definition: A matrix norm is unitarily invariant if $||U A V|\|=\|||A| \|$ for all $A \in M_{n}$ and all unitary matrices $U, V \in M_{n}$.

Examples: Frobenius norm $\|\cdot\|_{2}$ and spectral norm ||| $\cdot \|\left.\right|_{2}$.

Definition: Condition number for matrix inversion with respect to the matrix norm $\left\|\|\cdot\| \mid\right.$ of nonsingular $A \in M_{n}$ is

$$
\kappa(A)=\| \| A^{-1}|\||\|A \mid\|
$$

Frequently used in perturbation analysis in numerical linear algebra.
Observation: $\kappa(A) \geq 1$ (from submultiplicative property).
Observation: For unitarily invariant norms: $\kappa(U A V)=\kappa(A)$.

