Homework \# 6

Numbers below refer to problems in Horn, Johnson "Matrix analysis." A number 1.1.P2 means Problem 2 in Section 1.1.

1. (7.1.P1) Let $A=\left[a_{i j}\right] \in M_{n}$ be psd. Why is $a_{i i} a_{j j} \geq\left|a_{i j}\right|^{2}$ for all distinct $i, j \in\{1, \ldots, n\}$? If A is pd, why is $a_{i i} a_{j j}>\left|a_{i j}\right|^{2}$ for all distinct $i, j \in\{1, \ldots, n\}$? If there is a pair of distinct indices i, j such that $a_{i i} a_{j j}=\left|a_{i j}\right|^{2}$, why is A singular?
2. (7.2.P5)
(a) Verify that $L_{1}=\left[\begin{array}{cc}2 & 0 \\ 1 & \sqrt{3}\end{array}\right]$ provides the Cholesky factorization of the pd matrix $A_{1}=\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right]$, and that $4 \cdot 4 \geq 2^{2} \cdot(\sqrt{3})^{2}=\operatorname{det} A_{1}$.
(b) Let $A=\left[a_{i j}\right] \in M_{n}$ be pd and let $A=L L^{*}$ be a Cholesky factorization. Let $L=\left[c_{i j}\right]$ such that $c_{i j}=0$ for $j>i$. Show that $\operatorname{det} A=$ $\prod_{i=1}^{n} c_{i i}^{2}$. Show that each $a_{i i}=\left|c_{i 1}\right|^{2}+\ldots+\left|c_{i, i-1}\right|^{2}+c_{i i}^{2} \geq c_{i i}^{2}$, with equality iff $c_{i k}=0$ for all $k=1, \ldots, i-1$. Deduce Hadamard's inequality $\operatorname{det} A \leq \prod_{i=1}^{n} a_{i i}$ with equality iff A is diagonal.
3. (7.3.P7 new and old) Let $A \in M_{m, n}$ and let $A=V \Sigma W^{*}$ be a singular value decomposition. Define $A^{\dagger}=W \Sigma^{\dagger} V^{*}$, in which Σ^{\dagger} is obtained from Σ by first replacing each nonzero singular value with its inverse and then transposing. Show that:
(a) $A A^{\dagger}$ and $A^{\dagger} A$ are Hermitian
(b) $A A^{\dagger} A=A$
(c) $A^{\dagger} A A^{\dagger}=A^{\dagger}$
(d) $A^{\dagger}=A^{-1}$ if A is square and nonsingular
(e) $\left(A^{\dagger}\right)^{\dagger}=A$
(f) A^{\dagger} is uniquely determined by the properties (a)-(c)

The matrix A^{\dagger} is the Moore-Penrose generalized or pseudo inverse of A.
4. (7.3.P10) Let $A=V \Sigma W^{*}$ be a singular value decomposition of $A \in$ $M_{m, n}$ and let $r=\operatorname{rank} A$. Show that:
(a) The last $n-r$ columns of W are an orthonormal basis for the null space of A.
(b) The first r columns of V are an orthonormal basis for the range of A.
(c) The last $n-r$ columns of V are an orthonormal basis for the null space of A^{*}.
(d) The first r columns of W are an orthonormal basis for the range of A^{*}.
5. We know that if A and B are pd then $A \circ B$ is pd. Show that $A \circ B$ can be pd even if not both A and B are pd.
6. (7.7.P14) Let $A, B \in M_{n}$ be pd and let $\alpha \in(0,1)$. Show that $\alpha A^{-1}+$ $(1-\alpha) B^{-1} \geq(\alpha A+(1-\alpha) B)^{-1}$, with equality iff $A=B$. Thus the function $f(t)=t^{-1}$ is strictly convex on the set of pd matrices.
7. (7.8.P12, similar to 7.8.P21 in old edition) Let $A=\left[a_{i j}\right] \in M_{n}$ be pd. Partition $A=\left[\begin{array}{cc}A_{11} & x \\ x^{*} & a_{n n}\end{array}\right]$, in which $A_{11} \in M_{n-1}$. Use the Cauchy expansion (0.8.5.10) or the Schur complement to show that $\operatorname{det} A=$ $\left(a_{n n}-x^{*} A_{11}^{-1} x\right) \operatorname{det} A_{11} \leq a_{n n} \operatorname{det} A_{11}$, with equality iff $x=0$. Use this observation to give a proof by induction of Hadamard's inequality (7.8.2) and its case of equality.

