
Streaming
P2P Protocol

Back end
Evaluation

Spotify — Behind the Scenes
A Eulogy to P2P (?)

Gunnar Kreitz

Spotify
gkreitz@spotify.com

KTH, May 7 2014

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

What is Spotify?

I Lightweight on-demand streaming
I Large catalogue, over 20 million tracks1

I Available in 28 countries.
I Over 24 million active users, over 6 million subscribers
I Fast (median playback latency of 265 ms)
I Legal

1Number of tracks licensed globally. Catalogue size varies in each country.
Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Business Idea

I More convenient than piracy
I Spotify Free (ads)
I Spotify Premium (no ads, better mobile, offline, API)

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Business Idea

I More convenient than piracy
I Spotify Free (ads)
I Spotify Premium (no ads, better mobile, offline, API)

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Technical Design Goals

I Available
I Fast
I Scalable
I Secure

Photo by I like http://www.flickr.com/photos/ilike/4920776953/, CC BY NC ND 2.0
Gunnar Kreitz Spotify — Behind the Scenes

http://www.flickr.com/photos/ilike/4920776953/


Streaming
P2P Protocol

Back end
Evaluation

The Importance of Being Fast

I How important is speed?
I Increasing latency of Google searches by 100 to 400ms

decreased usage by 0.2% to 0.6% [Brutlag09]
I The decreased usage persists
I Median playback latency in Spotify is 265 ms (feels immediate)

Photo by moogs http://www.flickr.com/photos/anjin/23460398/, CC BY NC ND 2.0

Gunnar Kreitz Spotify — Behind the Scenes

http://www.flickr.com/photos/anjin/23460398/


Streaming
P2P Protocol

Back end
Evaluation

The forbidden word

(By http://www.flickr.com/photos/marxalot/, CC BY-SA 2.0)
Gunnar Kreitz Spotify — Behind the Scenes

http://www.flickr.com/photos/marxalot/


Streaming
P2P Protocol

Back end
Evaluation

Client Software vs. Web-based

I Web-based applications are easier to update and maintain
I Web-based don’t need to be installed
I Client software still gives better user experience
I Volume control, separate application, faster
I Auto-upgrades eases parts of installation pain

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Overview of Spotify Protocol

I Proprietary protocol
I Designed for on-demand streaming
I Only Spotify can add tracks
I 96–320 kbps audio streams (most are Ogg Vorbis q5, 160 kbps)
I Peer-assisted streaming

Photo by opethpainter http://www.flickr.com/photos/opethpainter/3452027651, CC BY 2.0

Gunnar Kreitz Spotify — Behind the Scenes

http://www.flickr.com/photos/opethpainter/3452027651


Streaming
P2P Protocol

Back end
Evaluation

Spotify Protocol

I (Almost) Everything over TCP
I (Almost) Everything encrypted
I Multiplex messages over a single TCP connection
I Persistent TCP connection to server while logged in

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Caches

I Player caches tracks it has played
I Default policy is to use 10% of free space (capped at 10 GB)
I Caches are large (56% are over 5 GB)
I Least Recently Used policy for cache eviction
I Over 50% of data comes from local cache
I Cached files are served in P2P overlay

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Streaming a Track

I Request first piece from Spotify servers
I Meanwhile, search Peer-to-peer (P2P) for remainder
I Switch back and forth between Spotify servers and peers as

needed
I Towards end of a track, start prefetching next one

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

TCP Congestion Window

I TCP maintains several windows, among them cwnd
I cwnd is used to avoid network congestion
I A TCP sender can never have more than cwnd un-ack:ed bytes

outstanding
I Additive increase, multiplicative decrease
I What to do with cwnd when a connection sits idle?
I RFC 5681 (TCP Congestion Control) says:

Therefore, a TCP SHOULD set cwnd to no more
than RW before beginning transmission if the TCP
has not sent data in an interval exceeding the
retransmission timeout.

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

TCP Congestion Window

I TCP maintains several windows, among them cwnd
I cwnd is used to avoid network congestion
I A TCP sender can never have more than cwnd un-ack:ed bytes

outstanding
I Additive increase, multiplicative decrease
I What to do with cwnd when a connection sits idle?
I RFC 5681 (TCP Congestion Control) says:

Therefore, a TCP SHOULD set cwnd to no more
than RW before beginning transmission if the TCP
has not sent data in an interval exceeding the
retransmission timeout.

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

TCP Congestion Window and Spotify

I Spotify traffic is bursty
I Initial burst is very latency-critical
I Want to avoid needless reduction of congestion window
I Configure server kernels to not follow the RFC 5681 SHOULD.

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

When to Start Playing?

I Minimize latency while avoiding stutter
I TCP throughput varies

I Sensitive to packet loss
I Bandwidth over wireless mediums vary

I Model throughput as a Markov chain and simulate
I Heuristics

Image by ronin691 http://www.flickr.com/photos/ronin691/3482770627, CC BY SA 2.0

Gunnar Kreitz Spotify — Behind the Scenes

http://www.flickr.com/photos/ronin691/3482770627


Streaming
P2P Protocol

Back end
Evaluation

Security Through Obscurity

I Client must be able to access music data
I Reverse engineers should not
I So, we can’t tell you exactly how our client works
I Plus, we need to apply software obfuscation

Image by XKCD http://xkcd.com/730/, CC BY NC 2.5

Gunnar Kreitz Spotify — Behind the Scenes

http://xkcd.com/730/


Streaming
P2P Protocol

Back end
Evaluation

Security Through Obscurity

(Image from XKCD, http://www.xkcd.com/257)
Gunnar Kreitz Spotify — Behind the Scenes

http://www.xkcd.com/257


Streaming
P2P Protocol

Back end
Evaluation

P2P Goals

I Easier to scale
I Less servers
I Less bandwidth
I Better uptime
I Fun!

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Music vs. Movies

Music
I Small (5 minutes, 5MB)
I Many plays/session
I Large catalog
I Active users

Movies
I Large (2 hours, 1.5 GB)
I High bit rate

Main problem: peer discovery Main problem: download strategy

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Music vs. Movies

Music
I Small (5 minutes, 5MB)
I Many plays/session
I Large catalog
I Active users

Movies
I Large (2 hours, 1.5 GB)
I High bit rate

Main problem: peer discovery Main problem: download strategy

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Finding Peers

I Sever-side tracker (BitTorrent style)
I Remembers 200 peers per track
I Returns 10 (online) peers to client on query

I Broadcast query in small (2 hops) neighborhood in overlay
(Gnutella style)

I LAN peer discovery (cherry on top)
I Client uses all mechanisms for every track

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

P2P Structure

I Unstructured network
I Edges are formed as needed (a few/track played)
I Nodes have fixed maximum degree (60)
I No overlay routing
I Neighbor eviction by heuristic evaluation of utility

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

P2P Structure

I All peers are equals (no supernodes)
I A user only downloads data she needs
I P2P network becomes (weakly) clustered by interest
I Oblivious to network architecture

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Brief Comparison to BitTorrent

I One (well, three) P2P overlay for all tracks (not per-torrent)
I Does not inform peers about downloaded blocks
I Downloads blocks in order
I Does not enforce fairness (such as tit-for-tat)
I Informs peers about urgency of request

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Downloading in P2P

I Ask for most urgent pieces first
I If a peer is slow, re-request from new peers
I When buffers are low, download from central server as well

I When doing so, estimate what point P2P will catch up from

I If buffers are very low, stop uploading

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Limit resource usage

I Cap number of neighbors
I Cap number of simultaneous uploads

I TCP Congestion Control gives “fairness” between connections

I Cap cache size
I Mobile clients don’t participate in P2P

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

P2P NAT Traversal

I Asks to open ports via UPnP
I Attempt connections in both directions
I High connection failure rate (65%)
I Room for improvement

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Security in our P2P Network

I Control access to participate
I Verify integrity of downloaded files
I Data transfered in P2P network is encrypted
I Usernames are not exposed in P2P network, all peers assigned

pseudonym

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Avoiding hijacking

I A peer cannot ask peers to connect to arbitrary IP
address/port

I Avoiding DDoS issues

I Misbehaving peers are reported

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

The future of P2P?

I Number of services using P2P is small, and shrinking
I Bandwidth and CDN pricing is continually getting cheaper
I P2P is desktop client-only, and mobile usage is rising
I Is P2P on mobile and/or web a good idea?
I Spotify’s P2P network is being shut off

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

The future of P2P?

I Number of services using P2P is small, and shrinking
I Bandwidth and CDN pricing is continually getting cheaper
I P2P is desktop client-only, and mobile usage is rising
I Is P2P on mobile and/or web a good idea?
I Spotify’s P2P network is being shut off

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Back End Software

I Comprised of many small services
I Do one task and do it well

I Python, C++, Java

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

High-level overview

I Client connects to an Access Point (AP)
I AP handles authentication and encryption
I AP demultiplexes requests, forwards to backend servers
I Gives redundancy and fault-tolerance

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

High-level overview (cont’d)

Client APProprietary

Playlist
Proprietary

SearchHTTP

Storage

HTTP

User

HTTP

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Lookup, version 1

I Put content on random servers
I Multicast UDP to find server
I Each server has a small daemon with an index, responding to

lookup queries
I Scaling issues

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Lookup, version 2

I DNS-based (using TXT records) Consistent Hashing
I Each client knows entire keyspace
I Each server handles parts of keyspace
I Hash key to find master server
I Repeated hashing to find slaves

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Storage

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Evaluation

I So, how well does it work?
I Data from three papers (P2P’10, P2P’11, Infocom’13)

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Data Sources

Mon Tue Wed Thu Fri Sat Sun Mon
0

10

20

30

40

50

60

70

80

90

100

%

Data source - ratio - by week

R
R
D
T
O
O
L

/
T
O
B
I

O
E
T
I
K
E
R

Cur: Min: Avg: 
Server 10.86 6.76 9.62 
P2P 33.90 23.78 33.86 
Cache 55.24 48.47 56.53 

Weekday
Morning

Weekend
Night

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Data Sources

I Mostly minor variations over time
I Better P2P performance on weekends
I P2P most effective at peak hours

I 8.8% from servers
I 35.8% from P2P
I 55.4% from caches

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Latency and Stutter

I Median latency: 265 ms
I 75th percentile: 515 ms
I 90th percentile: 1047 ms
I Below 1% of playbacks had stutter occurrences

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Finding Peers

Table : Sources of peers

Sources for peers Fraction of searches
Tracker and P2P 75.1%
Only Tracker 9.0%
Only P2P 7.0%
No Peers Found 8.9%

I Each mechanism by itself is fairly effective

Photo by Mikael Altemark http://www.flickr.com/photos/altemark/337248947/, CC BY 2.0

Gunnar Kreitz Spotify — Behind the Scenes

http://www.flickr.com/photos/altemark/337248947/


Streaming
P2P Protocol

Back end
Evaluation

Protocol Overhead

Table : Distribution of application layer traffic in overlay network

Type Fraction
Music Data, Used 94.80%
Music Data, Unused 2.38%
Search Overhead 2.33%
Other Overhead 0.48%

I Measured at socket layer
I Unused data means it was cancelled/duplicate

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

How do users switch between devices?

D1

0.713 D20.040

M10.246
0.236

0.477

0.287

0.084

0.017

0.899

Gunnar Kreitz Spotify — Behind the Scenes



Streaming
P2P Protocol

Back end
Evaluation

Thanks!
gkreitz@spotify.com

Gunnar Kreitz Spotify — Behind the Scenes


	Streaming
	P2P Protocol
	Back end
	Evaluation

