Homework \# 7

1. Let

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \\
B & =\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Determine $F(A), F(B), F(A+B)$, and show that $F(A+B)$ is a proper subset of $F(A)+F(B)$.
2. Show that $A \in M_{2}(R)$ is positive stable if and only if $\operatorname{tr}(A)>0$ and $\operatorname{det}(A)>0$.
3. Let $B \in M_{n}$ be a matrix none of whose eigenvalues μ_{i} is equal to 1 , and define

$$
A=(B+I)(B-I)^{-1}
$$

Show that the eigenvalues of A are given by

$$
\lambda_{i}=\frac{\mu_{i}+1}{\mu_{i}-1}
$$

Prove that $\operatorname{Re}\left(\lambda_{i}\right)<0$ if and only if $\left|\mu_{i}\right|<1$. Conclude that A is negative stable if and only if B is a convergent matrix.
4. Use the transformation in the previous exercise to derive the discrete time version of the Lyapunov equation from the continuous time counterpart. (That is, derive $A^{*} G A-G=-H$ from $G A+A^{*} G=-H$, where the last negative sign is because we discuss negative stability here.)

