

EFFECT OF GROUND TIRE RUBBER ON OPEN-GRADED MIXTURE PERFORMANCE

Louis-Marie de Beaufort Daniel Mack Alžbeta Masnicová

Open Graded Friction Course Mixture

- Porous 15% Voids
- Increases in wet weather friction
- Susceptible to ravelling and rutting
- Generally using polymer and fibre additives

Ground Tyre Rubber

- Two forms
- Waste reuse
- Environmental benefits
- Economically efficient
- Requires performance evaluation

PURPOSE OF THE PAPER

Compares the performance of 7 Open Graded mixture types

- 6 rubber modified products and 1 control specimen
- Same aggregate skeleton for all mixtures

Tests:

Draindown

Durability

- Cohesion
- Rutting
- Permeability

DRAINDOWN TESTING

To ensure that the draindown is within acceptable levels, encountered during production, storage, transport and placement of mixture

- 1. Tested at 2 different temperatures
- the anticipated plant production temperature (here: 151°C)
- 15°C above that temperature
- 2. Place sample into tared wire basket (do not consolidate sample).
- 3. Place basket into the oven for 60 + 5 minutes
- 4. Remove basket and determine the mass of drain down material

DRAINDOWN TESTING - RESULTS

Table 7. Draindown of Laboratory Produced OGFC Materials

Temp (°F)	Specimen	Control	Liberty -20 @15%	Liberty Cryohammer -30	Liberty Crackermill	Lehigh MD- 400-TR	MD- 400- AM	MD- 105- TR
305	1	0.06	0.17	0.16	0.11	0.28	0.23	0.06
305	2	0.45	0.20	0.18	0.07	0.30	0.28	0.09
332	1	0.03	0.05	0.29	0.12	0.13	0.11	0.13
332	2	0.05	0.09	0.09	0.07	0.63	0.16	0.06

PERFORMANCE TESTING

Tests

Hamburg testing
Asphalt Pavement Analyzer
Cantabro testing
Permeability testing – Florida Method

HAMBURG TESTING

Test for rutting performance

Max acceptable rutting criteria 0,5 inches

- Testing apparatus –
 water bath and weighted testing wheel
- Uses set sample size

20 000 passes of the tracking wheel

HAMBURG TESTING - RESULTS

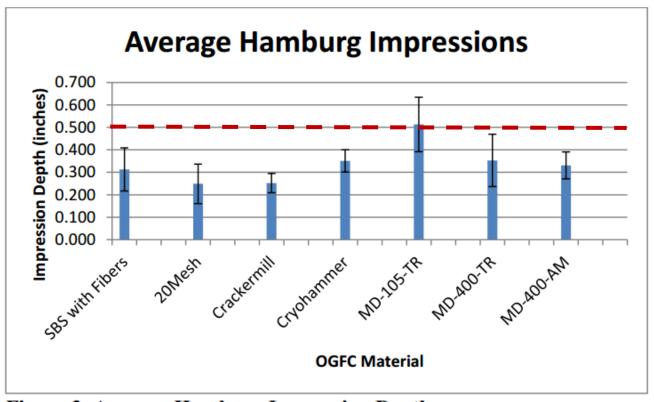


Figure 3. Average Hamburg Impression Depths

ASPHALT PAVEMENT ANALYZER

Test for rutting susceptibility of the material

Testing temperature 64°C for at least 4 hours

Beam or cylindrical samples under repetitive wheel loads, measuring the amount of permanent deformation under the wheel path

ASPHALT PAVEMENT ANALYZER - RESULTS

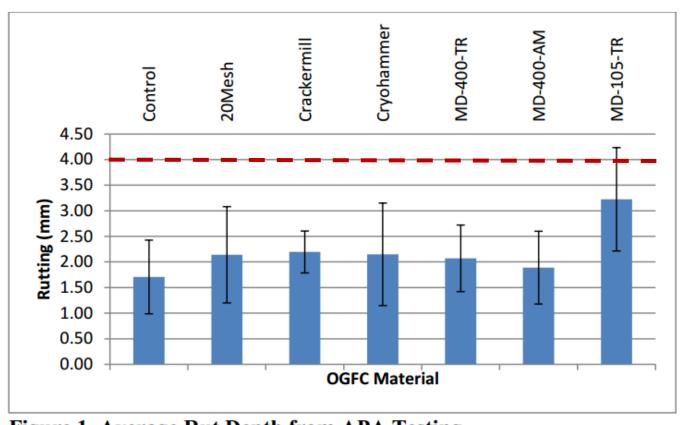


Figure 1. Average Rut Depth from APA Testing

CANTABRO TESTING

To evaluate the cohesion, bonding, and effects of abrasion on the open graded materials

The materials are tested at room temperature in a L.A. Abrasion machine.

Specimens are subjected to abrasion for 300 revolutions at a rate of 30 to 33 revolutions per minute. The material loss from each specimen is measured.

CANTABRO TESTING - RESULTS

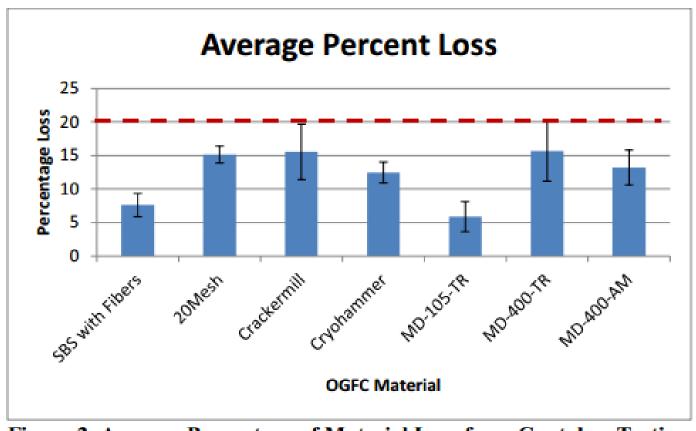


Figure 2. Average Percentage of Material Loss from Cantabro Testing

PERMEABILITY TESTING — FLORIDA METHOD

To test the permeability of the modified asphalt mixture


Falling head equation used to determine the values of permeability

$$k = \frac{a * L}{A * t} * \ln \frac{h_1}{h_2} * t_c$$

THE FALLING HEAD PERMEABILITY TEST

To determine the coefficients of permeability

- 1. Saturated specimen
- 2. Standpipes are filled with de-aired water to a given level
- 3. Water flow through the specimen until the water reaches a given limit
- 4. The time required for the water in the standpipe to drop from the upper to the lower level is recorded

PERMEABILITY TESTING — FLORIDA METHOD - RESULTS

Table 8. Average Permeability of Laboratory Compacted OGFC Materials

Material	Average Permeability (10 ⁻⁵ cm/s)	Standard Deviation of Permeability (10 ⁻⁵ cm/s)
Control	21,346	8,438
20Mesh	9,000	1,441
Crackermill	12,795	6,826
Cryohammer	15,876	817
MD-105-TR	15,985	5,913
MD-400-TR	18,676	5,846
MD-400-AM	17,008	5,904

SUMMARY

Results

- No dramatic difference in durability over any mix or test
- Observed failures
- Binder optimisation required for permeability

Conclusion

With appropriate mix testing, the GTR is an appropriate replacement.

It should however be monitored in the field to truly assess it's performance

REVIEW

General Findings

- Overall findings of the report were well delivered
- Excellent structure and clear language used in the report
- Some minor issues with table referencing and introducing technical terms
- Some reliance on other papers

REVIEW

Methodology

- Binder properties inferred
- Constant Aggregate Skeleton
- All tests follow AASHTO or Department of Transport procedure but not greatly explained

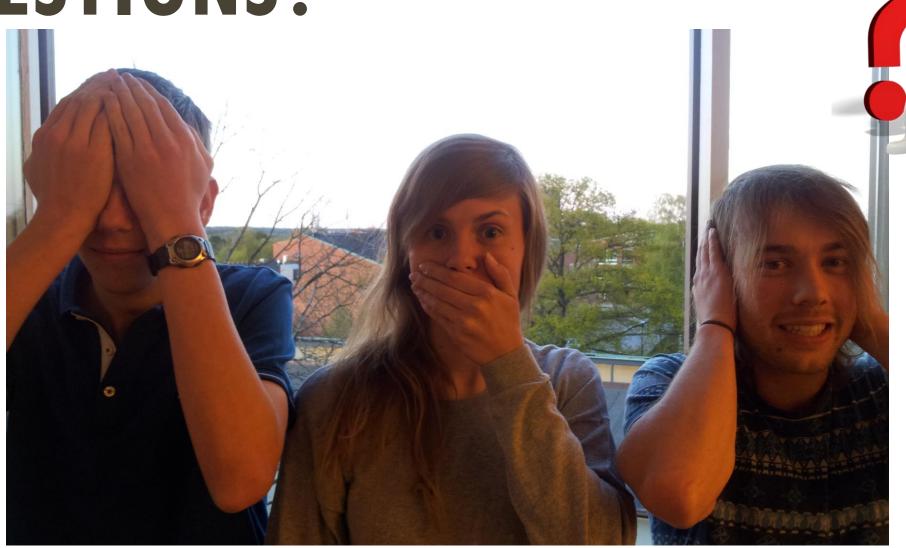
APA: number of load cycles, target value Permeability: target value

Statistical analysis where applicable

REVIEW

Conclusions and Recommendation

- Dot point formatting
- Comparison to other studies
- Future application options but no further research options


ASSESSMENT

Improvements

- Glossary of terms
- Aesthetics
 - Paragraphed Recommendations
 - Centred Tables and Figures
- More background on borrowed research
- Stating permeability requirements

QUESTIONS?

