AF2903 – Road Construction and Maintenance

Paper Presentation and Peer-Review Group 1

ROYAL INSTITUTE OF TECHNOLOGY

Freeze – Thaw Performance Assessment of Stabilized Pavement Foundations

Peter J. Becker, David J. White, Pavana K. R. Vennapusa, Mark J. Dunn.

Emanuele Grimolizzi Octavian Babiuc

Freeze and thaw phenomenon

- Temperature decreases: water freezes
- Volume increases
- □ Temperature increases: ice melts
- Saturated soil: weaking of the support capacity
- AASHTO 1993 design guide: effective roadbed soil resilient modulus base on the month of the year
- The Mechanistic-Empirical Pavement Design Guide (MEPDG): equivalent subgrade resilient modulus based on:
 - Regional climatic data
 - Time after thawing
 - Soil properties

Site conditions

- Project constructed in Boone, Iowa in May-July 2012
- 16 different cross sections
- Length from 674 ft to 1348 ft (205 m to 410 m)
- Test done in October 2012 and April 2013 (during one seazon of spring-thaw)

Test Section Description Foundation Layer Profile ^a (above natural subgrade)		
Control	6 in. CLS ^b	12 in. compacted subgrade ^e
Mechanical Stabilization	6 in. CLS ^b	12 in. mechanically stabilized subgrade
4 in. Geocell + NW Geotextile	2 in. CLS ^b	4 in. geocell reinforced CLS, NW geotextile
6 in. Geocell + NW Geotextile	1 in. CLS ^b	6 in. geocell reinforced CLS, NW geotextile
NW Geotextile	6 in. CLS ^b	NW geotextile
Woven Geotextile	6 in. CLS ^b	woven geotextile
BX Polymer Grid	6 in. CLS ^b	biaxial geogrid
TX Polymer Grid	6 in. CLS ^b	triaxial geogrid
MP Fibers + PC Subbase	6 in. CLS ^b	6 in. recycled subbase + 5% PC + 0.4% MP fibers
FP Fibers + PC Subbase	6 in. CLS ^b	6 in. recycled subbase + 5% PC + 0.4% FP fibers
PC Subbase	6 in. CLS ^b	6 in. recycled subbase + 5% PC
Recycled Subbase	6 in. CLS ^b	6 in. recycled subbase
PC Subgrade	6 in. CLS ^b	12 in. 10% PC stabilized subgrade
10% FA Subgrade	6 in. CLS ^b	12 in. 20% fly ash (Port Neal) stabilized subgrade
15% FA Subgrade	6 in. CLS ^b	12 in. 15% fly ash (Ames) stabilized subgrade
20% FA Subgrade	6 in. CLS ^b	12 in. 10% fly ash (Muscatine and Port Neal) stabilized subgrade

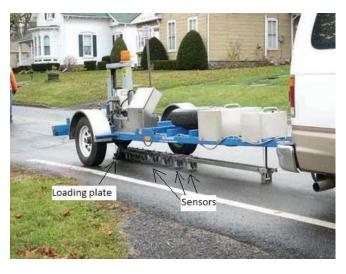
^a All thicknesses provided are nominal.

^cExisting subgrade scarified, moisture conditioned, and compacted.

^bCLS = crushed limestone subbase GP-GM or A-1-a (7% fines content).

In situ testing methods

Falling Weight Deflectometer


- 11.81 in. (3.6m) loading plate
- Load varies from 5000 lb to 15000 lb (2200 kg to 6800 kg)
- Deflections recorded by seismometers

$$E_{FWD} = \frac{(1 - \eta^2) \cdot \sigma_0 \cdot r}{D_0} F$$

 $E_{FWD} = elastic modulus [psi]$ $D_0 = vertical deflection [in.$ $\eta = 0.4 = Poisson's ratio$ $\sigma_0 = applied stress [psi]$ r = radius of the plate [in.]F = 2 = shape factor

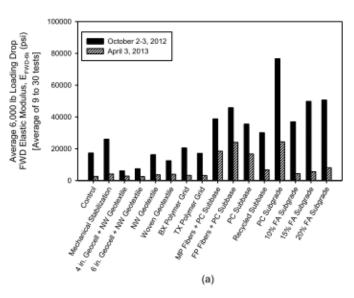
Above: Kuab FWD, used for this test

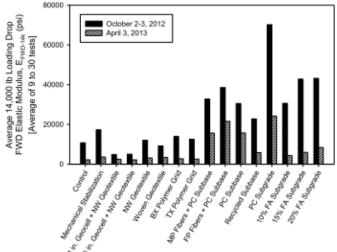
In situ testing methods

> Dynamic Cone Penetrometer

- Dropping of a 17.6 lb (~8 kg) from a height of 22.6 in.
- Measurements of the penetration
- Determination of CBR

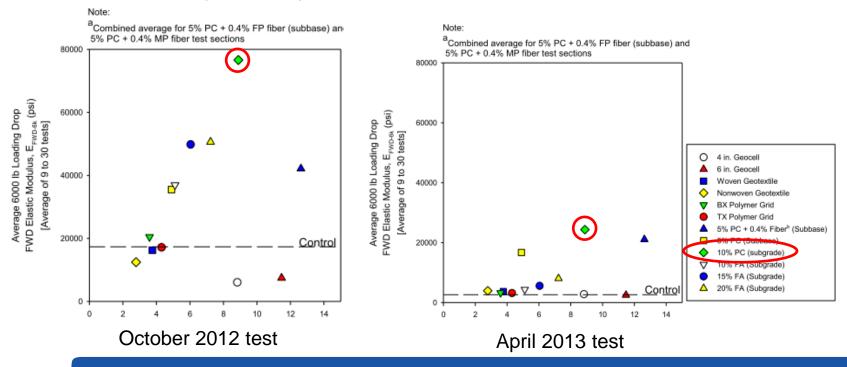
$$CBR = \frac{292}{PI^{1.12}} \text{ for all soils with } CBR > 10$$
$$CBR = \frac{1}{(0.017019PI)^2} \text{ for subgrade } CBR < 10$$


$$CBR = California Bearing Ratio$$
$$PI = Penetration Index \left[\frac{mm}{blow}\right]$$



Results

- FWD results showed that all sections experienced a significant decrease in E_{FWD}. Cement stabilized shows the best behaviour, the same for DCP test.
- Statistical analysis showed correlation between the two tests.
- □ A cost analysis is carried out.



Cost Analysis

- Pavement foundation stabilization must be cost effective.
- 6 different contractors have submitted a cost analysis.
- Higher investiments with the use of cement stabilization contribute to better pavement performance.

Review

- Positive aspects:
 - Good paper organization, the language is fluid and not hard to understand
 - The paper content reflects what the reader expects
 - Cost analysis, very useful and reliable.
- Negative aspects:
 - More pictures!
 - Problems with units
 - Statistics, not easy to understand!
 - Test made in USA, what about other countries?

Questions?

