Lecture 8: Outline

- Chapter 6 + Appendix D: Location and perturbation of eigenvalues
- Some other results on perturbed eigenvalue problems
- Chapter 8: Nonnegative matrices

Eigenvalue Perturbation Results, Motivation

We know from a previous lecture that $\rho(A) \leq||A|| \mid$ for any matrix norm. That is, we know that all eigenvalues are in a circular disk with radius upper bounded by any matrix norm. Better results?

What can be said about the eigenvalues and eigenvectors of $A+\epsilon B$ when ϵ is small?

GERŠGORIN CIRCLES

Geršgorin's Thm: Let $A=D+B$, where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$, and $B=\left[b_{i j}\right] \in M_{n}$ has zeros on the diagonal. Define

$$
r_{i}^{\prime}(B)=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|b_{i j}\right|
$$

$$
C_{i}(D, B)=\left\{z \in \mathbf{C}:\left|z-d_{i}\right| \leq r_{i}^{\prime}(B)\right\}
$$

Then, all eigenvalues of A are located in

$$
\lambda_{k}(A) \in G(A)=\bigcup_{i=1}^{n} C_{i}(D, B)
$$

The $C_{i}(D, B)$ are called Geršgorin circles.
If $G(A)$ contains a region of k circles that are disjoint from the rest, then there are k eigenvalues in that region.

KTH - Signal Processing 3
Magnus Jansson/Mats Bengtsson

Geršgorin, Improvements

Since A^{T} has the same eigenvalues as A, we can do the same but summing over columns instead of rows. We conclude that

$$
\lambda_{i}(A) \in G(A) \cap G\left(A^{T}\right) \quad \forall i
$$

Since $S^{-1} A S$ has the same eigenvalues as A, the above can be "improved" by

$$
\lambda_{i}(A) \in G\left(S^{-1} A S\right) \cap G\left(\left(S^{-1} A S\right)^{T}\right)
$$

$$
\forall i
$$

for any choice of S. For it to be useful, S should be "simple", e.g., diagonal (see Corollary 6.1.6).

INVERTIBILITY AND STABILITY

If $A \in M_{n}$ is strictly diagonally dominant such that

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \quad \forall i
$$

then

1. A is invertible.
2. If all main diagonal elements are real and positive then all eigenvalues are in the right half plane.
3. If A is Hermitian with all diagonal elements positive, then all eigenvalues are real and positive.

REDUCIBLE MATRICES

A matrix $A \in M_{n}$ is called reducible if

- $n=1$ and $A=0$ or
- $n \geq 2$ and there is a permutation matrix $P \in M_{n}$ such that

$$
P^{T} A P=\underbrace{\left.\left[\begin{array}{l|l}
B & C \\
\hline 0 & D
\end{array}\right]\right\} r n} \begin{aligned}
& \} r \\
& \} n-r
\end{aligned}
$$

for some integer $1 \leq r \leq n-1$.
A matrix $A \in M_{n}$ that is not reducible is called irreducible.
A matrix is irreducible iff it describes a strongly connected directed graph, " A has the SC property".

IRREDUCIBLY DIAGONALLY DOMINANT

If $A \in M_{n}$ is called irreducibly diagonally dominant if
i) A is irreducible ($=A$ has the SC property).
ii) A is diagonally dominant,

$$
\left|a_{i i}\right| \geq \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|
$$

iii) For at least one row, i,

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|
$$

INVERTIBILITY AND STABILITY, STRONGER RESULT

If $A \in M_{n}$ is irreducibly diagonally dominant, then

1. A is invertible.
2. If all main diagonal elements are real and positive then all eigenvalues are in the right half plane.
3. If A is Hermitian with all diagonal elements positive, then all eigenvalues are real and positive.

Perturbation theorems

Thm: Let $A, E \in M_{n}$ and let A be diagonalizable, $A=S \Lambda S^{-1}$.
Further, let $\hat{\lambda}$ be an eigenvalue of $A+E$. Then there is some eigenvalue λ_{i} of A such that

$$
\left|\hat{\lambda}-\lambda_{i}\right| \leq\left|\left\|S \left|\left\|\left|\left\|S^{-1}| ||\|E|\||=\kappa(S)|\| E|\|\right.\right.\right.\right.\right.\right.
$$

for some particular matrix norms (e.g., ||| $\cdot\left\|\left\|_{1},\left|||\cdot|| \|_{2},|||\cdot|||_{\infty}\right.\right.\right.$)
Cor: If A is a normal matrix, S is unitary $\Longrightarrow\left|\left||S|\left\|_{2}=\right\|\right|\right| S^{-1} \mid \|_{2}=1$. This gives

$$
\left|\hat{\lambda}-\lambda_{i}\right| \leq\left\|\left||E| \|_{2}\right.\right.
$$

indicating that normal matrices are perfectly conditioned for eigenvalue computations.

PERTURBATION CONT'D

If both A and E are Hermitian, we can use Weyl's theorem (here we assume the eigenvalues are indexed in non-decreasing order):

$$
\lambda_{1}(E) \leq \lambda_{k}(A+E)-\lambda_{k}(A) \leq \lambda_{n}(E) \quad \forall k
$$

We also have for this case

$$
\left[\sum_{k=1}^{n}\left|\lambda_{k}(A+E)-\lambda_{k}(A)\right|^{2}\right]^{1 / 2} \leq\|E\|_{2}
$$

where $\|\cdot\|_{2}$ is the Frobenius norm.

Perturbation of A Simple eigenvalue

Let λ be a simple eigenvalue of $A \in M_{n}$ and let y and x be the corresponding left and right eigenvectors. Then $y^{*} x \neq 0$.

Thm: Let $A(t) \in M_{n}$ be differentiable at $t=0$ and assume λ is a simple eigenvalue of $A(0)$ with left and right eigenvectors y and x. If $\lambda(t)$ is an eigenvalue of $A(t)$ for small t such that $\lambda(0)=\lambda$ then

$$
\lambda^{\prime}(0)=\frac{y^{*} A^{\prime}(0) x}{y^{*} x}
$$

Example: $A(t)=A+t E$ gives $\lambda^{\prime}(0)=\frac{y^{*} E x}{y^{*} x}$

Perturbation of eigenvalues cont'd

Errors in eigenvalues may also be related to the residual $r=A \hat{x}-\hat{\lambda} \hat{x}$. Assume for example that A is diagonalizable $A=S \Lambda S^{-1}$ and let \hat{x} and $\hat{\lambda}$ be a given complex vector and scalar, respectively. Then there is some eigenvalue of A such that

$$
\left|\hat{\lambda}-\lambda_{i}\right| \leq \kappa(S) \frac{\|r\|}{\|\hat{x}\|}
$$

(for details and conditions see book)
We conclude that a small residual implies a good approximation of the eigenvalue.

Literature with perturbation results

- J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econometrics. John Wiley \& Sons Ltd., 1988.
- H. Krim and P. Forster. Projections on unstructured subspaces. IEEE Trans. SP, 44(10):2634-2637, Oct. 1996.
- J. Moro, J. V. Burke, and M. L. Overton. On the Lidskii-Vishik Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure. SIAM Journal on Matrix Analysis and Applications, 18(4):793-817, 1997
- F. Rellich. Perturbation Theory of Eigenvalue Problems. Gordon \& Breach, 1969.
- J. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, 1965.

Perturbation of eigenvectors with

 SIMPLE EIGENVALUESThm: Let $A(t) \in M_{n}$ be differentiable at $t=0$ and assume λ_{0} is a simple eigenvalue of $A(0)$ with left and right eigenvectors y_{0} and x_{0}. If $\lambda(t)$ is an eigenvalue of $A(t)$, it has a right eigenvector $x(t)$ for small t normalized such that

$$
x_{0}^{*} x(t)=1
$$

with derivative

$$
x^{\prime}(0)=\left(\lambda_{0} I-A(0)\right)^{\dagger}\left(I-\frac{x_{0} y_{0}^{*}}{y_{0}^{*} x_{0}}\right) A^{\prime}(0) x_{0}
$$

B^{\dagger} denotes the Moore-Penrose pseudo inverse of a matrix B.
(See, e.g., J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econometrics. John Wiley \& Sons Ltd., 1988, rev. 1999)

Perturbation of eigenvectors with

SIMPLE EIGENVALUES:

THE REAL SYMMETRIC CASE

Assume that $A \in M_{n}(\mathbf{R})$ is real symmetric matrix with normalized eigenvectors x_{i} and eigenvalues λ_{i}. Further assume that λ_{1} is a simple distinct eigenvalue. Let $\hat{A}=A+\epsilon B$ where ϵ is a small scalar, B is real symmetric and let \hat{x}_{1} be an eigenvector of \hat{A} that approaches x_{1} as $\epsilon \rightarrow 0$. Then a first order approximation (in ϵ) is

$$
\hat{x}_{1}-x_{1}=\epsilon \sum_{k=2}^{n} \frac{x_{k}^{T} B x_{1}}{\lambda_{1}-\lambda_{k}} x_{k}
$$

Warning: Non-unique derivative in the complex valued case!
Warning, Warning Warning: No extension to multiple eigenvalues!

Magnus Jansson/Mats Bengtsson

Chapter 8: Nonnegative matrices

Def: A matrix $A=\left[a_{i j}\right] \in M_{n, r}$ is nonnegative if $a_{i j} \geq 0$ for all i, j, and we write this as $A \geq 0$. (Note that this should not be confused with the matrix being nonnegative definite!)
If $a_{i j}>0$ for all i, j, we say that A is positive and write this as $A>0$. (We write $A>B$ to mean $A-B>0$ etc.)

We also define $|A|=\left[\left|a_{i j}\right|\right]$.
Typical applications where nonnegative or positive matrices occur are problems in which we have matrices where the elements correspond to

- probabilities (e.g., Markov chains)
- power levels or power gain factors (e.g., in power control for wireless systems).
- any other application where only nonnegative quantities appear

Nonnegative matrices: Some properties

Let $A, B \in M_{n}$ and $x \in \mathbf{C}^{n}$. Then

- $|A x| \leq|A||x|$
- $|A B| \leq|A||B|$
- If $A \geq 0$, then $A^{m} \geq 0$; if $A>0$, then $A^{m}>0$.
- If $A>0, x>0$, and $A x=0$ then $A=0$.
- If $|A| \leq|B|$, then $\|A\| \leq\|B\|$, for any absolute norm $\|\cdot\|$; that is, a norm for which $\|A\|=\||A|\|$.

Nonnegative matrices: Spectral radius

Lemma: If $A \in M_{n}, A \geq 0$, and if the row sums of A are constant, then $\rho(A)=\||A|\|_{\infty}$. If the column sums are constant, then $\rho(A)=\| \| A \|_{1}$.

The following theorem can be used to give upper and lower bounds on the spectral radius of arbitrary matrices.

Thm: Let $A, B \in M_{n}$. If $|A| \leq B$, then $\rho(A) \leq \rho(|A|) \leq \rho(B)$.

Nonnegative matrices: Spectral Radius

Thm: Let $A \in M_{n}$ and $A \geq 0$. Then

$$
\begin{aligned}
& \min _{i} \sum_{j=1}^{n} a_{i j} \leq \rho(A) \leq \max _{i} \sum_{j=1}^{n} a_{i j} \\
& \min _{j} \sum_{i=1}^{n} a_{i j} \leq \rho(A) \leq \max _{j} \sum_{i=1}^{n} a_{i j}
\end{aligned}
$$

Thm: Let $A \in M_{n}$ and $A \geq 0$. If $A x=\lambda x$ and $x>0$, then $\lambda=\rho(A)$

Positive matrices

For positive matrices we can say a little more.
Perron's theorem: If $A \in M_{n}$ and $A>0$, then

1. $\rho(A)>0$
2. $\rho(A)$ is an eigenvalue of A
3. There is an $x \in \mathbf{R}^{n}$ with $x>0$ such that $A x=\rho(A) x$
4. $\rho(A)$ is an algebraically (and geometrically) simple eigenvalue of A
5. $|\lambda|<\rho(A)$ for every eigenvalue $\lambda \neq \rho(A)$ of A
6. $[A / \rho(A)]^{m} \rightarrow L$ as $m \rightarrow \infty$, where $L=x y^{T}, A x=\rho(A) x$, $y^{T} A=\rho(A) y^{T}, x>0, y>0$, and $x^{T} y=1$.

The root $\rho(A)$ is sometimes called a Perron root and the vector $x=\left[x_{i}\right]$ a Perron vector if it is scaled such that $\sum_{i=1}^{n} x_{i}=1$.

Nonnegative matrices

Generalization of Perron's theorem to general non-negative matrices?

Thm: If $A \in M_{n}$ and $A \geq 0$, then

1. $\rho(A)$ is an eigenvalue of A
2. There is a non-zero $x \in \mathbf{R}^{n}$ with $x \geq 0$ such that $A x=\rho(A) x$

For stronger results, we need a stronger assumption on A.

IRREDUCIBLE MATRICES

Reminder: A matrix $A \in M_{n}, n \geq 2$ is called reducible if there is a permutation matrix $P \in M_{n}$ such that

$$
P^{T} A P=\underbrace{\left[\begin{array}{c|c}
B & C \\
\hline 0 & D
\end{array}\right]}_{r}\} \begin{aligned}
& n-r \\
& \} n-r
\end{aligned}
$$

for some integer $1 \leq r \leq n-1$.

A matrix $A \in M_{n}$ that is not reducible is called irreducible.

Thm: A matrix $A \in M_{n}$ with $A \geq 0$ is irreducible iff $(I+A)^{n-1}>0$

IRREDUCIBLE MATRICES

Frobenius' theorem: If $A \in M_{n}, A \geq 0$ is irreducible, then

1. $\rho(A)>0$
2. $\rho(A)$ is an eigenvalue of A
3. There is an $x \in \mathbf{R}^{n}$ with $x>0$ such that $A x=\rho(A) x$
4. $\rho(A)$ is an algebraically (and geometrically) simple eigenvalue of A
5. If there are exactly k eigenvalues with $\left|\lambda_{p}\right|=\rho(A), p=1, \ldots, k$, then

- $\lambda_{p}=\rho(A) e^{i 2 \pi p / k}, p=0,1, \ldots, k-1$ (suitably ordered)
- If λ is any eigenvalue of A, then $\lambda e^{i 2 \pi p / k}$ is also an eigenvalue of A for all $p=0,1, \ldots, k-1$
- $\operatorname{diag}\left[A^{m}\right] \equiv 0$ for all m that are not multiples of k (e.g. $m=1$).

Magnus Jansson/Mats Bengtsson

PRIMITIVE MATRICES

A matrix $A \in M_{n}, A \geq 0$ is called primitive if

- A is irreducible
- $\rho(A)$ is the only eigenvalue with $\left|\lambda_{p}\right|=\rho(A)$.

Thm: If $A \in M_{n}, A \geq 0$ is primitive, then

$$
\lim _{m \rightarrow \infty}[A / \rho(A)]^{m}=L
$$

where $L=x y^{T}, A x=\rho(A) x, y^{T} A=\rho(A) y^{T}, x>0, y>0$, and $x^{T} y=1$.

Thm: If $A \in M_{n}, A \geq 0$, then it is primitive iff $A^{m}>0$ for some $m \geq 1$.

Stochastic matrices

A nonnegative matrix with all its row sums equal to 1 is called a (row) stochastic matrix

A column stochastic matrix is the transpose of a row stochastic matrix.
If a matrix is both row and column stochastic it is called doubly stochastic

STOCHASTIC MATRICES CONT'D

The set of stochastic matrices in M_{n} is a compact convex set.
Let $\mathbf{1}=[1,1, \ldots, 1]^{T}$. A matrix is stochastic if and only if $A \mathbf{1}=\mathbf{1} \Longrightarrow$ $\mathbf{1}$ is an eigenvector with eigenvalue +1 of all stochastic matrices

An example of a doubly stochastic matrix is $A=\left[\left|u_{i j}\right|^{2}\right]$ where $U=\left[u_{i j}\right]$ is a unitary matrix. Also, notice that all permutation matrices are doubly stochastic

Thm: A matrix is doubly stochastic if and only if it can be written as a convex combination of a finite number of permutation matrices.

Corr: The maximum of a convex function on the set of doubly stochastic matrices is attained at a permutation matrix!

Example, Markov processes

Consider a discrete stochastic process that at each time instant is in one of the states S_{1}, \ldots, S_{n}. Let $p_{i j}$ be the probability to change from state S_{i} to state S_{j}. Note that the transition matrix $P=\left[p_{i j}\right]$, is a stochastic matrix.

Let $\mu_{i}(t)$ denote the probability of being in state S_{i} at time t and $\mu(t)=\left[\mu_{1}(t), \ldots, \mu_{n}(t)\right]$, then $\mu(t+1)=\mu(t) P$ contains the corresponding probabilities for time $t+1$. If P is primitive (other terms are used in the statistics literature), then $\mu(t) \rightarrow \mu^{\infty}$ as $t \rightarrow \infty$ where $\mu^{\infty}=\mu^{\infty} P$, no matter what $\mu(0)$ is. μ^{∞} is called the stationary distribution.

Nice article: The Perron Frobenius Theorem: Some of its applications S. U. Pillai, T. Suel, S. Cha, IEEE Signal Processing Magazine, Mar. 2005.

FURTHER RESULTS

Other books contain more results.
In "Matrix Theory", vol. II by Gantmacher, for example, you can find results such as

Thm: If $A \in M_{n}, A \geq 0$ is irreducible, then

$$
(\alpha I-A)^{-1}>0
$$

for all $\alpha>\rho(A)$.
(Useful, for example, in connection with power control of wireless systems)

