LECTURE 8: OUTLINE

- Chapter 6 + Appendix D: Location and perturbation of eigenvalues
- Some other results on perturbed eigenvalue problems
- Chapter 8: Nonnegative matrices

KTH - Signal Processing

1

Magnus Jansson/Mats Bengtsson

EIGENVALUE PERTURBATION RESULTS, MOTIVATION

We know from a previous lecture that $\rho(A) \leq |||A|||$ for any *matrix* norm. That is, we know that all eigenvalues are in a circular disk with radius upper bounded by any matrix norm. Better results?

What can be said about the eigenvalues and eigenvectors of $A+\epsilon B$ when ϵ is small?

GERŠGORIN CIRCLES

Geršgorin's Thm: Let A=D+B, where $D=diag(d_1,\ldots,d_n)$, and $B=[b_{ij}]\in M_n$ has zeros on the diagonal. Define

$$r'_i(B) = \sum_{\substack{j=1\\j\neq i}}^n |b_{ij}|$$
$$C_i(D, B) = \{z \in \mathbf{C} : |z - d_i| \le r'_i(B)\}$$

Then, all eigenvalues of A are located in

$$\lambda_k(A) \in G(A) = \bigcup_{i=1}^n C_i(D, B) \quad \forall k$$

The $C_i(D, B)$ are called *Geršgorin circles*.

If G(A) contains a region of k circles that are disjoint from the rest, then there are k eigenvalues in that region.

KTH - Signal Processing

Magnus Jansson/Mats Bengtsson

GERŠGORIN, IMPROVEMENTS

Since A^T has the same eigenvalues as A, we can do the same but summing over columns instead of rows. We conclude that

$$\lambda_i(A) \in G(A) \cap G(A^T) \quad \forall i$$

Since $S^{-1}AS$ has the same eigenvalues as A, the above can be "improved" by

$$\lambda_i(A) \in G(S^{-1}AS) \cap G((S^{-1}AS)^T) \quad \forall i$$

for any choice of S. For it to be useful, S should be "simple", e.g., diagonal (see Corollary 6.1.6).

INVERTIBILITY AND STABILITY

If $A \in M_n$ is strictly diagonally dominant such that

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \qquad \forall i$$

then

- 1. A is invertible.
- 2. If all main diagonal elements are real and positive then all eigenvalues are in the right half plane.
- 3. If A is Hermitian with all diagonal elements positive, then all eigenvalues are real and positive.

KTH - Signal Processing

5

Magnus Jansson/Mats Bengtsson

REDUCIBLE MATRICES

A matrix $A \in M_n$ is called *reducible* if

- \bullet n=1 and A=0 or
- ullet $n\geq 2$ and there is a permutation matrix $P\in M_n$ such that

$$P^{T}AP = \left[\begin{array}{c|c} B & C \\ \hline 0 & D \end{array}\right] r$$

for some integer $1 \le r \le n-1$.

A matrix $A \in M_n$ that is not reducible is called *irreducible*.

A matrix is irreducible iff it describes a *strongly connected* directed graph, "A has the SC property".

IRREDUCIBLY DIAGONALLY DOMINANT

If $A \in M_n$ is called *irreducibly diagonally dominant* if

- i) A is irreducible (= A has the SC property).
- ii) A is diagonally dominant,

$$|a_{ii}| \ge \sum_{\substack{j=1\\j \ne i}}^{n} |a_{ij}| \qquad \forall i$$

iii) For at least one row, i,

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|$$

KTH - Signal Processing

7

Magnus Jansson/Mats Bengtsson

INVERTIBILITY AND STABILITY, STRONGER RESULT

If $A \in M_n$ is irreducibly diagonally dominant, then

1. A is invertible.

- 2. If all main diagonal elements are real and positive then all eigenvalues are in the right half plane.
- 3. If A is Hermitian with all diagonal elements positive, then all eigenvalues are real and positive.

PERTURBATION THEOREMS

Thm: Let $A, E \in M_n$ and let A be diagonalizable, $A = S\Lambda S^{-1}$. Further, let $\hat{\lambda}$ be an eigenvalue of A+E. Then there is some eigenvalue λ_i of A such that

$$|\hat{\lambda} - \lambda_i| \le |||S||| |||S^{-1}||| |||E||| = \kappa(S)|||E|||$$

for some particular matrix norms (e.g., $|||\cdot|||_1$, $|||\cdot|||_2$, $|||\cdot|||_\infty$).

Cor: If A is a normal matrix, S is unitary $\Longrightarrow |||S|||_2 = |||S^{-1}|||_2 = 1.$ This gives

$$|\hat{\lambda} - \lambda_i| \le |||E|||_2$$

indicating that normal matrices are perfectly conditioned for eigenvalue computations.

KTH - Signal Processing

9

Magnus Jansson/Mats Bengtsson

PERTURBATION CONT'D

If both A and E are Hermitian, we can use Weyl's theorem (here we assume the eigenvalues are indexed in non-decreasing order):

$$\lambda_1(E) < \lambda_k(A+E) - \lambda_k(A) < \lambda_n(E) \quad \forall k$$

We also have for this case

$$\left[\sum_{k=1}^{n} |\lambda_k(A+E) - \lambda_k(A)|^2\right]^{1/2} \le ||E||_2$$

where $||\cdot||_2$ is the Frobenius norm.

PERTURBATION OF A SIMPLE EIGENVALUE

Let λ be a simple eigenvalue of $A \in M_n$ and let y and x be the corresponding left and right eigenvectors. Then $y^*x \neq 0$.

Thm: Let $A(t) \in M_n$ be differentiable at t=0 and assume λ is a simple eigenvalue of A(0) with left and right eigenvectors y and x. If $\lambda(t)$ is an eigenvalue of A(t) for small t such that $\lambda(0)=\lambda$ then

$$\lambda'(0) = \frac{y^*A'(0)x}{y^*x}$$

Example: A(t) = A + tE gives $\lambda'(0) = \frac{y^*Ex}{y^*x}$.

KTH - Signal Processing

11

Magnus Jansson/Mats Bengtsson

PERTURBATION OF EIGENVALUES CONT'D

Errors in eigenvalues may also be related to the residual $r=A\hat{x}-\hat{\lambda}\hat{x}$. Assume for example that A is diagonalizable $A=S\Lambda S^{-1}$ and let \hat{x} and $\hat{\lambda}$ be a given complex vector and scalar, respectively. Then there is some eigenvalue of A such that

$$|\hat{\lambda} - \lambda_i| \le \kappa(S) \frac{||r||}{||\hat{x}||}$$

(for details and conditions see book).

We conclude that a small residual implies a good approximation of the eigenvalue.

LITERATURE WITH PERTURBATION RESULTS

- J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econometrics. John Wiley & Sons Ltd., 1988.
- (KTH)
- H. Krim and P. Forster. Projections on unstructured subspaces. *IEEE Trans. SP*, 44(10):2634–2637, Oct. 1996.
- J. Moro, J. V. Burke, and M. L. Overton. On the Lidskii-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure. SIAM Journal on Matrix Analysis and Applications, 18(4):793–817, 1997.
- F. Rellich. Perturbation Theory of Eigenvalue Problems. Gordon & Breach, 1969.
- J. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, 1965.

KTH - Signal Processing

13

Magnus Jansson/Mats Bengtsson

PERTURBATION OF EIGENVECTORS WITH SIMPLE EIGENVALUES

Thm: Let $A(t) \in M_n$ be differentiable at t=0 and assume λ_0 is a simple eigenvalue of A(0) with left and right eigenvectors y_0 and x_0 . If $\lambda(t)$ is an eigenvalue of A(t), it has a right eigenvector x(t) for small t normalized such that

 $x_0^* x(t) = 1$

with derivative

$$x'(0) = (\lambda_0 I - A(0))^{\dagger} \left(I - \frac{x_0 y_0^*}{y_0^* x_0} \right) A'(0) x_0$$

 B^{\dagger} denotes the Moore-Penrose pseudo inverse of a matrix B.

(See, e.g., J. R. Magnus and H. Neudecker. *Matrix Differential Calculus with Applications in Statistics and Econometrics*. John Wiley & Sons Ltd., 1988, rev. 1999)

PERTURBATION OF EIGENVECTORS WITH SIMPLE EIGENVALUES:

THE REAL SYMMETRIC CASE

Assume that $A\in M_n(\mathbf{R})$ is real symmetric matrix with normalized eigenvectors x_i and eigenvalues λ_i . Further assume that λ_1 is a simple distinct eigenvalue. Let $\hat{A}=A+\epsilon B$ where ϵ is a small scalar, B is real symmetric and let \hat{x}_1 be an eigenvector of \hat{A} that approaches x_1 as $\epsilon \to 0$. Then a first order approximation (in ϵ) is

$$\hat{x}_1 - x_1 = \epsilon \sum_{k=2}^n \frac{x_k^T B x_1}{\lambda_1 - \lambda_k} x_k$$

Warning: Non-unique derivative in the complex valued case!

Warning, Warning Warning: No extension to multiple eigenvalues!

KTH - Signal Processing

15

Magnus Jansson/Mats Bengtsson

CHAPTER 8: NONNEGATIVE MATRICES

Def: A matrix $A = [a_{ij}] \in M_{n,r}$ is nonnegative if $a_{ij} \ge 0$ for all i, j, and we write this as $A \ge 0$. (Note that this should not be confused with the matrix being nonnegative definite!)

If $a_{ij} > 0$ for all i, j, we say that A is *positive* and write this as A > 0. (We write A > B to mean A - B > 0 etc.)

We also define $|A| = [\,|a_{ij}|\,].$

Typical applications where nonnegative or positive matrices occur are problems in which we have matrices where the elements correspond to

- probabilities (e.g., Markov chains)
- power levels or power gain factors (e.g., in power control for wireless systems).
- any other application where only nonnegative quantities appear.

NONNEGATIVE MATRICES: SOME PROPERTIES

Let $A, B \in M_n$ and $x \in \mathbb{C}^n$. Then

• |Ax| < |A||x|

- $|AB| \leq |A||B|$
- If $A \ge 0$, then $A^m \ge 0$; if A > 0, then $A^m > 0$.
- If A > 0, x > 0, and Ax = 0 then A = 0.
- If $|A| \le |B|$, then $||A|| \le ||B||$, for any absolute norm $||\cdot||$; that is, a norm for which ||A|| = ||A|||.

KTH - Signal Processing

17

Magnus Jansson/Mats Bengtsson

NONNEGATIVE MATRICES: SPECTRAL RADIUS

Lemma: If $A \in M_n$, $A \ge 0$, and if the row sums of A are constant, then $\rho(A) = |||A|||_{\infty}$. If the column sums are constant, then $\rho(A) = |||A|||_1$.

The following theorem can be used to give upper and lower bounds on the spectral radius of **arbitrary** matrices.

Thm: Let $A, B \in M_n$. If $|A| \leq B$, then $\rho(A) \leq \rho(|A|) \leq \rho(B)$.

NONNEGATIVE MATRICES: SPECTRAL RADIUS

Thm: Let $A \in M_n$ and $A \ge 0$. Then

$$\min_{i} \sum_{j=1}^{n} a_{ij} \le \rho(A) \le \max_{i} \sum_{j=1}^{n} a_{ij}$$

$$\min_{j} \sum_{i=1}^{n} a_{ij} \le \rho(A) \le \max_{j} \sum_{i=1}^{n} a_{ij}$$

Thm: Let $A \in M_n$ and $A \ge 0$. If $Ax = \lambda x$ and x > 0, then $\lambda = \rho(A)$.

KTH - Signal Processing

19

Magnus Jansson/Mats Bengtsson

POSITIVE MATRICES

For positive matrices we can say a little more.

Perron's theorem: If $A \in M_n$ and A > 0, then

- 1. $\rho(A) > 0$
- 2. $\rho(A)$ is an eigenvalue of A

- 3. There is an $x \in \mathbf{R}^n$ with x > 0 such that $Ax = \rho(A)x$
- 4. $\rho(A)$ is an algebraically (and geometrically) simple eigenvalue of A
- 5. $|\lambda| < \rho(A)$ for every eigenvalue $\lambda \neq \rho(A)$ of A
- 6. $[A/\rho(A)]^m \to L$ as $m \to \infty$, where $L = xy^T$, $Ax = \rho(A)x$, $y^T A = \rho(A)y^T$, x > 0, y > 0, and $x^T y = 1$.

The root $\rho(A)$ is sometimes called a Perron root and the vector $x=[x_i]$ a Perron vector if it is scaled such that $\sum_{i=1}^n x_i=1$.

NONNEGATIVE MATRICES

Generalization of Perron's theorem to general non-negative matrices?

Thm: If $A \in M_n$ and A > 0, then

- 1. $\rho(A)$ is an eigenvalue of A
- 2. There is a non-zero $x \in \mathbf{R}^n$ with $x \ge 0$ such that $Ax = \rho(A)x$

For stronger results, we need a stronger assumption on A.

KTH - Signal Processing

21

Magnus Jansson/Mats Bengtsson

IRREDUCIBLE MATRICES

Reminder: A matrix $A\in M_n$, $n\geq 2$ is called *reducible* if there is a permutation matrix $P\in M_n$ such that

for some integer $1 \le r \le n-1$.

A matrix $A \in M_n$ that is not reducible is called *irreducible*.

Thm: A matrix $A \in M_n$ with $A \ge 0$ is irreducible iff $(I+A)^{n-1} > 0$

IRREDUCIBLE MATRICES

Frobenius' theorem: If $A \in M_n$, A > 0 is irreducible, then

- 1. $\rho(A) > 0$
- 2. $\rho(A)$ is an eigenvalue of A
- 3. There is an $x \in \mathbf{R}^n$ with x > 0 such that $Ax = \rho(A)x$

- 4. $\rho(A)$ is an algebraically (and geometrically) simple eigenvalue of A
- 5. If there are exactly k eigenvalues with $|\lambda_p|=\rho(A),\ p=1,\ldots,k,$ then
 - $\lambda_p = \rho(A)e^{i2\pi p/k}$, $p = 0, 1, \dots, k-1$ (suitably ordered)
 - If λ is any eigenvalue of A, then $\lambda e^{i2\pi p/k}$ is also an eigenvalue of A for all $p=0,1,\ldots,k-1$
 - $\operatorname{diag}[A^m] \equiv 0$ for all m that are not multiples of k (e.g. m=1).

KTH - Signal Processing

23

Magnus Jansson/Mats Bengtsson

PRIMITIVE MATRICES

A matrix $A \in M_n$, $A \ge 0$ is called *primitive* if

- \bullet A is irreducible
- $\rho(A)$ is the only eigenvalue with $|\lambda_p| = \rho(A)$.

Thm: If $A \in M_n$, $A \ge 0$ is primitive, then

$$\lim_{m \to \infty} [A/\rho(A)]^m = L$$

where $L=xy^T$, $Ax=\rho(A)x$, $y^TA=\rho(A)y^T$, $x>0,\ y>0,$ and $x^Ty=1.$

Thm: If $A \in M_n$, $A \ge 0$, then it is primitive iff $A^m > 0$ for some $m \ge 1$.

STOCHASTIC MATRICES

A nonnegative matrix with all its row sums equal to 1 is called a (row) stochastic matrix.

A column stochastic matrix is the transpose of a row stochastic matrix.

If a matrix is both row and column stochastic it is called doubly stochastic

stochastic.

KTH - Signal Processing

25

Magnus Jansson/Mats Bengtsson

STOCHASTIC MATRICES CONT'D

The set of stochastic matrices in M_n is a compact convex set.

Let $\mathbf{1} = [1, 1, \dots, 1]^T$. A matrix is stochastic if and only if $A\mathbf{1} = \mathbf{1} \Longrightarrow \mathbf{1}$ is an eigenvector with eigenvalue +1 of all stochastic matrices.

An example of a doubly stochastic matrix is $A=[|u_{ij}|^2]$ where $U=[u_{ij}]$ is a unitary matrix. Also, notice that all permutation matrices are doubly stochastic.

Thm: A matrix is doubly stochastic if and only if it can be written as a convex combination of a finite number of permutation matrices.

Corr: The maximum of a convex function on the set of doubly stochastic matrices is attained at a permutation matrix!

EXAMPLE, MARKOV PROCESSES

Consider a discrete stochastic process that at each time instant is in one of the states S_1,\ldots,S_n . Let p_{ij} be the probability to change from state S_i to state S_j . Note that the transition matrix $P=[p_{ij}]$, is a stochastic matrix.

Let $\mu_i(t)$ denote the probability of being in state S_i at time t and $\mu(t) = [\mu_1(t), \dots, \mu_n(t)]$, then $\mu(t+1) = \mu(t)P$ contains the corresponding probabilities for time t+1. If P is primitive (other terms are used in the statistics literature), then $\mu(t) \to \mu^\infty$ as $t \to \infty$ where $\mu^\infty = \mu^\infty P$, no matter what $\mu(0)$ is. μ^∞ is called the stationary distribution.

Nice article: The Perron Frobenius Theorem: Some of its applications, S. U. Pillai, T. Suel, S. Cha, IEEE Signal Processing Magazine, Mar. 2005.

KTH - Signal Processing

27

Magnus Jansson/Mats Bengtsson

FURTHER RESULTS

Other books contain more results.

In "Matrix Theory", vol. II by Gantmacher, for example, you can find results such as:

Thm: If $A \in M_n$, $A \ge 0$ is irreducible, then

$$(\alpha I - A)^{-1} > 0$$

for all $\alpha > \rho(A)$.

(Useful, for example, in connection with power control of wireless systems).