Modern Physics Exercises Chapter 3-4

Exercises Chapter 3

3.1.1 A photon has the wavelength 350 nm . Calculate the momentum of the photon in $\mathrm{kgm} / \mathrm{s}$.

Answer: $1.89 \times 10^{-27} \mathrm{kgm} / \mathrm{s}$
3.2.1 Calculate the energy in eV of an X-ray photon with wavelength 2.0 nm .

Answer: 620 eV
3.2.2 In a TV-apparatus the acceleration voltage is 10.0 kV . Calculate the deBroglie wavelength for the electron.

Answer: 12.3 pm
3.2.3 An X-ray tube has a so-called cut-off at the wavelength $1.7 \AA\left(1 \AA=10^{-10} \mathrm{~m}\right)$. Calculate the acceleration voltage of the tube.

Answer: 7.3 kV
3.2.4 What is the speed of an electron accelerated across a voltage of 1.2 kV ?

Answer: $6.5 \times 10^{5} \mathrm{~m} / \mathrm{s}$
3.2.5 Determine the above electrons deBroglie-wavelength.

Answer: 35 pm

Exercises Chapter 4

4.1.1 Let the work function of a metal be 2.02 eV . In vacuum, the metal surface is irradiated by light of wavelength 400 nm .
Calculate the kinetic energy of the ejected electron
Answer: $1.7 \times 10^{-19} \mathrm{~J}$
4.1.2 The same parameters as above. Calculate the speed of the electron.

Answer: $6.1 \times 10^{6} \mathrm{~m} / \mathrm{s}$
4.1.3 One irradiates a photocell with light of wavelength 369 nm . Across the photocell one puts a back voltage thus making the current of the circuit become zero. One measures to voltage to be 0.68 V . Calculate the work function W of the cathode material.

Answer: 2.7 eV
4.2.1 Determine the Compton wavelength for protons.

Answer: $1.32 \times 10^{-15} \mathrm{~m}$
4.2.2 A 0.15 MeV photon collides with a free electron in rest. Determine the wavelength of the photon before the collision.

Answer: $8.27 \times 10^{-3} \mathrm{~nm}$
4.2.3 The photon is scattered the angle 90°.

How large will the wavelength change become?
Answer: $2.43 \times 10^{-3} \mathrm{~nm}$
4.2.4 Determine the kinetic energy of the electron after the collision.

Answer: 34 keV .
4.3.1 A photon with the energy 3.0 MeV comes close to a nucleus and pair production occurs, an electron-positron pair appears. He electron gets the kinetic energy 0.25 MeV .
Determine the kinetic energy of the positron.
Answer: 1.73 MeV

