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Chapter 5. Statistical physics 

 
Black body radiation from objects with the temperatures of 
6000 K (like the Sun) and at 4000 K. 
 
5.1 Introduction 
By using statistical physics one can connect macroscopic and microscopic properties of 
particles like molecules in a gas that can be described classically as well as electrons in solid-
state physics that can be described microscopically by quantum mechanics, etc. It was of great 
interest to apply methods to calculate how the energy in a certain system is distributed over 
the constituencies, like in a gas at different temperatures.   
Normally one discusses three different distribution functions:  

i) Identical particles with any spin like gas molecules.  
ii) Bose particles with 0 or integer spin obeying the exclusion principle. 
iii) Fermi particles that are identical and with spin ½, not obeying the exclusion 

principle.  
The Fermi distribution we will discuss in the Solid State Physics section, but here we 
concentrate on the Maxwell-Boltzmann’s distribution function and the factors that generate 
the Planck law of radiation. 
 
The phenomenon Bose-Eistein condensation has recently been awarded the Nobel prize in 
physics and illustrates how one works both theoretically and experimentally at very low 
temperatures, close to the absolute zero point of temperature. Experimentally one has 
achieved these extremely low temperatures with optical traps and several laser beams.  

 
 
One can make an atomic beam slow down and be captured in a trap making the velocity of the 
atoms go towards zero. This also results in making their interaction between each other 
become very small, and thereby obtaining a temperature close to zero.  
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5.2 Maxwell-Boltzmann distrubution 
 
Suppose that we have N molecules with k different energies, u1, u2, u3, …, uk distributed with 
increasing energy. We may also suppose that there are ni particles with energy ui. We then get 
the total energy: 
U = n1u1 + n2u2 + n3u3 + … nkuk 
If we also suppose that the probability for a molecule i has the energy ui is gi. Maxwell and 
Boltzmann studied a system with molecules and came to the following conclusion regarding a 
continuous distribution function with discrete energies (u1, u2, u3, …): 
 

duegeduun uβα −−=)(  
 
Here we can interpret n(u)du as the number of molecules with energies between u och u+du. 
We can also write the distribution function as a function of p, that is the momentum p. The 
energy for a particle that is not moving at a relativistic speed can be written as: 
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Now we can rewrite the distribution function as follows: 
 

dpegedppn mp 2/2
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The constants a and b can be determined if you suppose that the total number of states are N 
and if you use kinetic gas theory giving the total energy U, in a system of molecules that is 
related to the temperature T according to the following equation: 
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The constant k = 1.380 x 10-23 Joule/(molecule K) is the Boltzmann constant. By other 
constrains one can show that  
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We can now rewrite the Boltzmann distribution function expressed in u, p or in the v:  
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This is the number of states with energies between u and u + du.  
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Maxwell-Boltzmann distribution can also be expressed as: 
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, which is the number of states with momentum between p and p + dp. Finally we can 
rearrange the expression as a function of the molecular velocity v: 
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With the help of the expressions above on can derive the systems total energy when we have 
N molecules: 
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From this expression one can derive the mean energy per molecule: 
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But since β = 1/kT  we get the mean energy per molecule: 
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Example  
Determine the mean energy per molecule at room temperature in the unit eV/molecule. 
 
With the Maxwell-Boltzmann distribution we get   
 

moleculeeVmoleculeeVu /038.0/10602.1/)20273(10380.1
2
3 1923 ≈×+×××= −−  

= 0.038 eV/molecule. 
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We can also say that at room temperature the mean energy per molecule of a gas is around 
1/25 eV, that we can compare with the electronic transitions of for instance atomic hydrogen 
that are of the order of 1-10 eV. 
 
We can calculate the most probable velocity of the molecules (vP), their mean velocity  ( v = 
vmedel) and the so-called RMS-velocity (vRMS): 
 

mkTvP /2=  
 

mkTv π/8=  
 

mkTvRMS /3=  
 
5.3 Planck’s radiation law  
 
One often describes Planck’s work with models of radiation. Let us imagine a sphere, inside 
painted in black and with a small hole. When you make light hit the sphere and the small hole, 
the light is reflected many times inside the sphere and looses intensity. The cavity absorbs and 
emits radiation all the time.  
 

 
 
Soon we will find that the radiation intensity depends on the temperature of the sphere. We 
name it blackbody radiation. Planck examined the conditions of blackbody radiation and 
found expressions that were quite similar to the Maxwell-Boltzmann distribution functions. 
 
He examined how the spectral energy density u(f)df  depended on the radiation frequency f 
and the temperature, T and derived the following expression: 
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This equation is called the Planck radiation law and fits with experiments.  
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Planck curves with energy as a function of wavelength λ. 
 
With the equation c = fλ we can transform the expression for the radiation law to an 
expression for u = u(λ): 
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If you take the derivative of this expression you will get the maximum of the function: 
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The wavelength when the maximum occurs we can call λmax. After taking the derivative we 
obtain: 
 

Tk
hc 1
965.4max =λ   or with inserting of the values of the constants: 

 

T
110898.2 3

max
−×=λ  m   is the wavelength in m if the temperature is given in Kelvin. 

 
This formula is called the Wien’s displacement law, which shows how the wavelength 
maximum is displaced with temperature T. 
If we integrate the curve over all frequencies at a certain temperature T we obtain the Stefan-
Boltzmann law that gives the total emitted energy (e) per second and over area unit: 
 

4Te σ=  
 
σ = 5.67x10-8 W/(m2 K4)   
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Example 
If you double the temperature, how much more energy is radiated? 
 
According to the Stefan-Boltzmann law the energy is proportional against T4. If T´= 2T we 
obtain the total radiated energy becomes 24 times greater, that is 16 times greater. 
 
Example 
If you study the solar spectrum from the Earth, you find that the intensity maximum is found 
around 500 nm. Calculate the Sun’s surface temperature if you regard the Sun as a blackbody 
radiator.  
 
Wien’s law gives: T  = (2.898x10-3/500x10-9) K = 5800 K 

Chapter 6 
6.1 The Schrödinger equation  
 
In  1926, Schrödinger presented those equations that came to be the foundations of modern 
physics and the development of quantum physics and quantum mechanics. Earlier unsolved 
problems concerning issues in chemistry, biochemistry, the processes of life, the foundations 
of Nature and its development were solved. After Einstein’s presentation of the theory of 
special relativity and Bohr’s succesful description of the energy levels of the hydrogen, Erwin 
Schrödinger tried to formulate a theory that could explain the build up of the atom. He derived 
the following equation, the so called time-independent Schrödinger equation: 
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In the same way as in the wave dynamics of electromagnetism, Schrödinger introduced a 
wave function Ψ, as a function of the space coordinates, here for a matter wave associated 
with the electrons movement around the nucleus, that De Broglie had presented. With this 
equation, that includes the electron mass, Planck´s constant, the electron wave function and 
the energy of the atom, the quantised energy levels of the atom can be evaluated.  
The Schrödinger equation can be generalised to three space coordinates and then becomes:  
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The potential energy Epot for the hydrogen atom is the electrons potential energy at the 
distance r from the proton: 
 

r
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In order to be able to solve the Schrödinger equation, a second degree differential equation in 
the variables x, y, z, one finds it easiest to turn to polar coordinates: 
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After this exchange of variables, the Schrödinger equation can be written: 
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This equation seems at first sight to be more complicated than the ordinary Schrödinger 
equation. However, we will try to divide it into three parts that depends on the variables r, 
θ and φ  and then try to separate the equations and then solve them separately.  

With    
r
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If we then divide the Schrödinger equation into three products depending on r, θ and φ  and 
assume that we can write the wave function according to: 
 

)()()(),,( φθφθ ΦΘ=Ψ rRr   
 
Here R(r) describes how the wave function Ψ varies with radius r, θ and φ. 
 
We take the derivative with respect to r, θ and φ and find that: 
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These expressions we now put into the Schrödinger equation: 
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Now, we move terms containing φ to the right side: 
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This equation can only be correct if both sides of the equation are equal to the same constant 
since they are functions of different variables. Let us call the constant m2 (it will show later 
why we choose this expression for the constant). This gives the following equation: 
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The left part of the Schrödinger equation can be written: 
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We have now just one variable on the left side and one variable on the right side. The various 
parts must be equal to the same constant. Let us call it l(l+1) (It will also show why we denote 
it in this way).  
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Thus, we have got three differential equations of the second order. The first one is relatively 
simple to solve. We can compare with the simple differential equation: 
 

02 =+′′ yky  
 
that has the solution  kxDkxCAey ikx sincos +==
In our case we get the solution to one part of the Schrödinger equation: 
 

φφ imAe=Φ )(  
 
If we let the point P rotate 360o in the xy-plane we return to the same point P. We can also 
say that the function Φ(φ) shall get the same value after this rotation: 
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( ) ( )πφφ 2+Φ=Φ  
 
This leads to  , which can only be true if m is equal to 0 or an integer, i.e. )2( πφφ += imim AeAe
 

,...3,2,1,0 ±±±=m  
 
This derivation has thus given rise to possible values for the so-called MAGNETIC 
QUANTUM NUMBER m. We now realize why we introduced the constant m2 earlier. 
 
The solution to the equation that contains the function Θ(θ) is more complicated to solve, but 
can e expressed in so called Lengendre functions. They can exist only if l in the equations 
above is an integer, where: 
 

lm ±±±±= ,..,3,2,1,0  
 
This constant l is called the ORBITAL QUANTUM NUMBER. 
 
The solution to the last part of the Schrödinger equation with respect to the radial function 
R(r) is also rather complicated. The solutions are polynomials that are called Laguerre 
functions. This equation has a solution only if E is positive or if E assumes certain negative 
values: 
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Tis expression is the same as Bohr got for the hydrogen atom. Furthermore, n has to be an 
integer, where 
 

1,...,2,1,0 −= nl  
 
The number n is called the PRINCIPAL QUANTUM NUMBER and can assume the 
following values: 
 

,...3,2,1=n  
 
So far, we have got the following quantum numbers when solving the Schrödinger equation or 
the hydrogen atom: 
 
n = 1, 2, 3, ...    The Principal Quantum number 
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l = 0, 1, 2, …, n-1    The Orbital Quantum number 
m = -l, -(l-1), …-3, -2, -1, 0, 1, 2, 3, …(l-1), l The Magnetic Quantum number 
 
Thus, we can divide the wave function into three functions, where Ψ(r,Θ, Φ) = Rnl Θlm Φ m. 
 
 
Contents Chapter 5-6 

5.1 Introduction 
5.2 Maxwell-Boltzmann distribution 
5.3 Planck’s radiation law 
6.1 Schrödinger equation 

 
Learning goals 
Be able to discuss the different distribution functions and within what fields theay are used 
Be able to discuss the Maxwell-Boltzmann distribution and its use within molecular physics 
Calculate the molecular velocities within a gas 
Be able to discuss the various velocity measures as mean velocity, RMS-velocity etc 
Calculate the energies of molecules as a function of temperature 
Determine temperatures with the Wien law 
Calculate the energies with the Stefan-Boltzmann law 
Generally try to follow the solution of the Schrödinger equation with the derivation of the 
quantum numbers  
Be able to solve the differential equation leading to the magnetic quantum number 
Be able to determine possible orbital quantum numbers and magnetic quantum numbers for a 
given principal quantum number 
 
 
 
Advices for reading 
Think of the fact that one with statistical physics can connect macroscopic and microscopic 
phenomena 
Try to follow the derivation of the Boltzmann distribution and how to use it to determine 
molecular velocities in a gas 
Think of that the Planck radiation law gives us a tool for determining the temperature of stars 
at great distances 
Try to understand how the Schrödinger equation gives us solutions of energy levels in small 
systems as atoms, molecules etc 
  
Readings 

• Thornton, Modern Physics, Saunders 
• Krane, Modern Physics, Wiley 
• Beiser, Concepts of Modern Physics, McGraw-Hill 
• Serway, Moses, Moger, Modern Physics, Saunders 
• Eisberg, Resnick, Quantum Physics of Atoms, Molecules, Solids and Particles, Wiley 
• Blatt, Modern Physics, McGraw-Hill 
• Halliday and Resnick, Fundamentals of Physics, Wiley  
• Blatt, Modern Physics, McGraw-Hill 
• Benson, University physics, Wiley 

 
WEB-redings 
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• http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html 
• http://nobelprize.org/nobel_prizes/physics/laureates/1918/planck-bio.html 
• http://nobelprize.org/nobel_prizes/physics/laureates/1933/schrodinger-bio.html 
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