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Chapter 7 

The atom 
7.1 Introduction 
The spectroscopy showed that each element has a characteristic spectrum. For some elements 
(hydrogen, some alkali metals) the spectral series were very regular, and the series easily 
recognizable. 
Balmer found for the visible wavelengh of the hydrogen spectrum that 
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                                        The Balmer series of atomic hydrogen 
 
Encouraged by Planck’s success with the quantisation phenomenon, Bohr’s theory for 
hydrogen theory for hydrogen was presented 1913. It means that in a bound (atomic) system 
the energy is quantised. The systems possible energy levels can be described by an energy 
formula, where (in the simplest model) each level can be assed with one quantum number n. 
The absorption of electromagnetic radiation or through collisions with surrounding atoms, 
kinetic energy is transferred to the electron, leading to the excitation of the atom; the opposite 
de-excitation process takes place under photon emission. Around a proton with charge e+ an 
electron with opposite charge is orbiting. The proton mass is around 1836 times heavier than 
the electron, why in the simplest description the electron is moving in a circular orbit around 
the (infinitely heavy) proton.  
By the use of mass spectrometers the different elements masses could be determined in detail. 
Below is shown a modern mass spectrometer, a so-called mass quadrupole with great 
selectivity. 
 

 
 
7.2 Bohr’s three postulates 

• 1. The electron orbits in stabile orbits without radiating energy. 
• 2. When the electron jumps from one stabile orbit to another it absorbs or emits energy 

according to Ei - Ef = hfif    
• 3. The integral of the electrons momentum p around the electrons orbit is equal to an 

integer of Planck’s constant h. 
 

∫ = nhpds  
 
Postulate 3) gives, since p is constant along the orbit 
 ∫ ∫ =⋅== nhrpdsppds π2  

dvs    mvr = nh/2π 
Newton’s second law in the r-direction gives 
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e2/4πε0r2 = mv2/r 
If we eliminate v from these two equations and solve for r (depending on the integer n), we 
get: 

rn = n2 ε0h2/(me2π) 
 
The electrons energy, E, without taking the rest mass into account, is the sum of the kinetic 
and potential energy: 
 
E = ½ mv2 - e2/4πε0r =  ½ mv2 

- mv2 = - ½ mv2 = - e2/8πε0r 
 
(The energy < 0 since the electron is bound) 
 
Put in the expression for rn and solve for E (that depends on the integer n) 
 
En = - me4/(8ε0h2 n2) 
 
We see that the energy is quantised and besides negative. The quantum number n is called the 
principle quantum number and can have the values 1, 2, 3,… 
 
7.3 Energy levels 
Matter consists of atoms and each atom consists of a small but heavy nucleus and an electron 
cloud. Every electron has an accurate energy. Every atom has many different energy levels. 
Every excited atom gets rid of its excess energy. Then, an electron jumps from one orbit with 
higher energy to an orbit with lower energy and the excess energy is emitted as a photon. The 
energy difference between two levels is Em – En. 
 

Em –  En = - me4/8ε0h2 (1/m2 - 1/n2) = -13,61 eV (1/m2 - 1/n2) 
 

      
             Energy level diagram of atomic hydrogen 
 
Thus, we can calculate the energy of the absorbed photon that is absorbed/emitted in 
connection with the electronic transition.  
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Since we have the energy expression for the levels and the photon energy we can derive how 
the wavelength λ depends on the quantum numbers m and n: 
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R = 1.097x107 m-1  is called the Rydberg constant.  
The expression gives the transitions wavelength if you know the quantum numbers m and n. 
 
Example 
What wavelength do we get if an electron jumps from m=2 till n=1 in atomic hydrogen? 
The formula for the wavelength gives  
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The spectral line 121.5 nm is also called the Lymanalfa or Lα that also can be seen in the solar 
spectrum. It has a short wavelength and can be found in the so-called VUV-region, Vacuum-
Ultra-Violet region. 
 
7.4 X-ray spectra 
Let us in detail study the radiation from a X-ray tube that has been described in section 3.2. 
The tube is connected to a high voltage from about 10 kV to around 30 kV. The material of 
the anode consists of an element that can stand high temperatures, as tungsten (Wolfram) or 
Molybdenum.  One heats the cathode in order to easily get free electrons that can be 
accelerated towards the anode. 
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The radiation consists of two types, the characteristic radiation and the continuous radiation or 
Bremsstrahlung (From German breaking radiation). We can study the spectrum of the figure 
below where several X-ray spectra are shown for different acceleration voltages. 
 

 
The Bremsstrahlung can be explained by scattering theory. When an electric charge is 
accelerated, radiation is emitted, just as in an antenna. At the bending of electric charges or 
free electrons they will be accelerated and will emit X-ray radiation. The radiation with the 
shortest wavelength or with the highest energy is obtained when all of the electrons energy is 
transformed to photon energy. We can easily calculate the frequency and wavelength for this 
radiation, i.e. , fc and λc: 
 

eVhfc =  
 
With the equation c =fλ we get 
 

eV
hc

heV
c
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c

c
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/
λ  

From this, the shortest wavelength, we will then have a continuous spectrum of 
Bremsstrahlung that can be illustrated with the figure below. 
 

 
 
 
Example 
Calculate the shortest wavelength we get if the acceleration voltage is 20 kV. 
With the formula for the cut-off wavelength we get: 
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X-ray or Röntgen’s pictures 
These are Wilhelm Röntgen’s own pictures of his wife’s hand from 1895. 
 

    
            Wilhelm K. Röntgen 1845-1923 
 
Moseley diagram 
When one examined the peaks of the X-ray spectrum for different anode materials one could 
see that the peaks corresponded to electronic transitions and photon emission from the 
materials inner shells. The big peak of the spectrum is called Kα and the one at shorter 
wavelength Kβ, which means an electron jumps to the K-shell, illustrated in the figure below. 
One systematically examined Kα and Kβ radiation for various elements with different atomic 
numbers, Z (proton number). Making a diagram where one puts the square root of the 
frequency of the radiation f1/2 against Z one gets a straight line, like in the figure below, which 
is called a Moseley diagram: 
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We can try to see if we with the quantum mechanics atomic model can obtain this linear 
expression. We can formulate the energy expression for an element with atomic number Z (in 
the eV unit): 
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Here, we have multiplied the expression for the hydrogen atom with the factor (Z-1)2 
describing how the energy levels are influenced by heavier elements. The charge squared  
found in the expression can be explained by the fact that the expression for the potential 
energy of the atom for hydrogen is e2, why we for heavier elements should have Z2. When we 
study how the inner shell electrons are influenced, we just eliminate this charge and that gives 
the remaining charge Z-1, which we then just, take the square of. The formula does not hold 
for hydrogen, but for heavier elements. 
 
Let us continue and solve the frequency out of the energy expression: 
 
 f
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h
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 now see that the frequency is proportional against (Z-1)2 and takes the square root of the 
expression: 
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This equation describes the same straight line as in the Mosley diagram! 
 
 
 
 
7.5 Lasers 
 

 
Laser radiation from a copper vapour laser, Nd:YAG-laser and a dye laser 
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How does a laser work?  

 
A laser is a light source where one for instance has a gas (or another suitable medium) 
contained in a cavity held between two mirrors. If you excite the medium with energy of the 
form of a light flash or electronically, the medium will transfer its excess energy into photons 
that will pass back and forth between the mirrors. In this way the light will be coherent. The 
light will also have just one wavelength (most often). 

7.6 Light amplification by stimulated emission  
Excited atoms will normally emit uncoherent light in random emission or  spontaneous 
emission. The light will also be emitted randomly in direction. However, an excited atom can 
be forced to emit light in one specific direction by the phenomenon stimulated emission. One 
important factor for this process to occur is that there are more excited atoms of a sample than 
atoms in the ground state, i.e. we have a so-called inverted population. When a lamp has 
transferred energy to the atoms in one flash, which is called optical pumping, some atoms are 
excited. These atoms will return to their ground state in some nanoseconds and emit one 
photon each. However, if the excited atom is influenced by a photon of the same energy that 
corresponds to the transition in question, the atom will emit a photon in the same direction as 
the incoming photon.  Thus, we will have two photons with the same energy or wavelength. If 
there are many excited atoms they will be influenced to emit the same types of photons in the 
same direction. We will now have many coherent photons and this phenomenon is called 
stimulated emission.  

 
 

When all, or almost all, excited atoms have emitted photons we will have a device with high 
intensity where all photons have the same wavelength. If one of the mirrors of the cavity has a 
transparency of around 4%, this will result in a beam of light escaping from the cavity. We 
have now a laser beam. Laser stands for light amplified by stimulated emission of radiation.  



Modern Physics  Chapter 7-8 9

The first laser was the Ruby laser that is shown below and Theodor Maiman built it in 1960. 
 

 
 
 

8. Molecules 
 
8.1 Introduction 
In this section we will discuss what kinds of forces binding atoms together to form 
molecules. There are in general two kinds of cases. In most un-organic molecules, they are 
held together by ionic bonds but concerning the organic molecules and some un-organic 
they are held together by covalent bonds. Besides, there are other types of bonds like the 
so-called Van der Waals bonds. We will discuss the ionic bonds of the diatomic molecule 
NaCl and covalent bonds of the simplest of all molecules, the hydrogen molecule, H2. 
When you study spectra from molecules and compare with atoms, one finds that 
molecular spectra a rich of spectral lines and also more complex than atomic spectra. The 
electronic distribution around the molecules is of course more complex, even though the 
nuclei are at rest relative each other. However, this is not the case. The nuclei both rotate 
around their common centre of gravity and vibrate relative each other, and this gives rise 
to both rotational energy and vibrational energy and also quantised rotational and 
vibrational energy levels. Transitions between these levels give rise to rotational and 
vibrational spectral lines. Also transitions between rotational level of excited states and for 
example the ground electronic states give rise to rotational spectra. A molecule thus gives 
much more spectral lines rich compared to atomic spectra. We will also discuss how to 
gain information of different parameters in the study of molecular spectra, such as 
dissociation energies etc. 
 
8.2 Ionic bonds 
A good example of a molecule that has an ionic bond is NaCl. If you calculate the total 
energy of the sodium and the chlorine atoms at a large distance from each other and 
compare with the NaCl-molecules energy, one finds that it is less than the Na and Cl 
atomic energy. This makes the molecule stable and keeps it held together. Let us perform 
this calculation. 11Na has 11 electrons, that is 1 electron more than the rare gas helium 
(electron configuration 1s22s22p6) why it has a 3s electron in its outer shell, that is easy to 
remove. Na-atom can be ionised if you add 5.1 eV getting the ion Na+. We can say that 
the ionisation energy is 5.1 eV for Na. The chlorine atom 17Cl has the electronic 
configuration 1s22s22p63s23p5. The outer 3p shell lacks an electron and it is easy to 
capture an electron. If an electron gets in the neighbourhood of a Cl-atom it can be 
captured in that shell making the ion to form Cl-. Cl- has 3.8 eV less energy than the Cl 
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atom and is more stabile. The ionisation of takes of 5.1 eV but if we let the Na-electron 
join the Cl- ion we gain 3.8 eV, why the difference only will be 5.1 – 3.8 eV = 1.3 eV. We 
have thus formed a diatomic molecule with less energy than the energies of the two 
separate atoms, why it is stabile.  
 
 
8.3 Covalent bonding and the H2 molecule 
The hydrogen molecule is stabile, which is not caused by ion bonding since it is needed 
13,6 eV to ionise atomic hydrogen. H- might be formed, but the electron affinity is small, 
around 0,7 eV. This is the reason for H+ and H- at any distance from each other not can 
have less energy than two H-atoms have together. However, a stabile H2 molecule can be 
explained by quantum mechanics and the Schrödinger equation. When solving the 
Schrödinger equation for the hydrogen molecule, one gets two solutions. One solution is 
symmetric and one anti-symmetric. Before letting the two hydrogen atoms move closer to 
each other they both have their 1s level with the same energy. Together we have two 
electrons, but if the inner shells would be filled, there would be space for four electrons. 
When the two atoms are brought together the two 1s levels are split into two levels, one 
symmetric and one anti-symmetric level as can be seen in the figure. The symmetric can 
have two electrons, as well as the anti-symmetric. The symmetric gets a minimum at the 
nuclear distance 0.074 nm. In covalent bonds two atoms together own an electron pair that 
in general move in the area between the two nuclei in this way bonding the molecule 
together. Looking at larger molecules one observes that the valence electrons are the ones 
participating in the interaction. 
 

 
Energy diagram for the H2-molecule 
 
 
Thus, the covalent bond is of quantum mechanical character but is also responsible for the 
built-up of certain crystals. 
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8.4 Molecular energy 
Let us start to discuss diatomic molecules, which also can be regarded as model molecules 
for polyatomic molecules. The molecule has several different types of energies. It can, just 
as the atom, be electronically excited, or by photons, just as the atom is excited between 
the atomic shells. A molecule can also rotate, vibrate and bend. All these energy forms are 
quantised. When the molecule both vibrates and rotates, complicated spectra appears, that 
gives information about how the energy of the molecule is built.  
 
8.4.1Vibrational energy 
Let us start with a diatomic molecule where the distance between the nuclei is r0. We can 
then express the potential energy of the molecule as a Taylor series around r0 and gets: 
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Since the molecule has a minimum in potential energy, the first derivative must be 
dr
dV = 

0 in that point. The second term of the expression above must then be zero. If we truncate 
the series omitting higher order terms we obtain: 
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where we can compare with the harmonic oscillator for a spring, where the spring constant 
is k. The potential energy can be derived using Hooke’s law:  
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The spring constant for the system will become k = 2

2
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The energy expression is called the parabolic approximation for molecular energies and is 
shown in the figure below together with a normal potential energy curve for a diatomic 
molecule: 
 

 
 
Energy diagram for a diatomic molecule  
as a function of the nuclear r. 
The parabolic approximation is also shown. 
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If we put the systems reduced mass to µ we immediately get the angular frequency of the 
molecular system to  
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A diatomic molecule with the masses m1 and m2 and µ stands for the reduced mass and is  
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In the Schrödinger equation we can put the potential energy of the system to 
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After some derivations one then obtains the following expressions for the molecular 
vibrational levels just as we made the derivation of the hydrogen atomic levels: 
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where υ = 0, 1, 2, …which is called the vibrational quantum number. 

and 
π2
h

=h . We have found that the molecular energy also is quantised. For υ = 0 we get 
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in its lowest position, but just 
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ωh . With the condition c = νλ  and the expression for the 
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spectroscopic cases one often uses the unit cm-1 in order to describe the energies. For a 
transition σ is directly proportional against the energy. You just invert the wavelength and 
get the wavenumber σ. For instance a laser excitation of a molecule with the wavenumber 
15 000 cm-1 corresponds to the wavelength of λ = 1/15 000 cm = 670 nm in the red 
wavelength region. 
With the energy expression we can describe the vibrational levels in an energy diagram 
for a diatomic molecule as shown in the figure below. The distance between the levels  
 

 
Energidiagram med vibrationsnivåer 
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will be smaller the higher up i the energy level diagram since the higher order terms show 
up. A more adequate picture we get if we use the following energy expression: 
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Here ωe stands for the vibrational constant and ωexe is the first higher order term that 
corresponds to the centrifugal distortion when the molecule both rotates and vibrates. 
Within spectroscopy both constants are given in the unit cm-1. 
 

 
 

The  Morse potential 
To regard a molecular vibration as a harmonic oscillator is only the first order approximation. 
But reality does not look directly as we have foreseen. For example there is a limit for how 
high the potential energy can reach. Finally, the two atoms will be separated. Another 
possibility is to use the so called Morse-potential: 

( )2)(1 rra
e
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Here De is the dissociation energy and re is the internuclear equilibrium distance. In the figure 
below one can see both models. The harmonic oscillator is a good approximation at smaller 
distances between the nuclei, but is unreasonable for grater separation distances. The 
harmonic oscillator model does not take into account the breakage of the bond for larger 
distances. In the diagram we have put the energy as a function of the internuclear distance. 
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8.4.2 Rotational energy 
 
Rotational spectra of molecules appear in the microwave region. A molecules complete 
spectrum has its origin in the electronic transitions of the molecule, the molecular 
vibrations and rotations. If we compare the order of the different types of transitions we 
can generalize as follows: 
 
1. The distance between rotational levels of a molecule is normally around 10-3 eV, and 

the transitions between rotational energy levels lay in the wavelength region around 
0.1 nm to 1 cm. 

2. The energy differences of vibrational energy levels is some 100 times greater, that is 
around 0.1 eV and one finds radiation transitions between 1 µm to 0.1 nm. 

3. The electronic transitions of a molecule have the largest energy and the difference 
between the levels is around 1 eV or more. The wavelengths we observe are often seen 
in the visible and in the UV-region. 

 
We can describe the rotation by applying a simple mechanical model an suppose we have 
a diatomic molecule consisting of atoms with masses m1 and m2. The molecule rotates 
freely around their center of mass. Let us suppose the distance between the atoms is r and 
the distance from the center of mass to atom 1 is r1 and to atom 2, r2. 
The moment of inertia (I) of the molecule is 
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With the equation m1r1 = m2r2 we can rewrite the moment of inertia as: 
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Here µ is the reduced mass and 
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In the figure below, we observe the system where the atoms rotate around the center of 
mass. 

 
 

 
A rotating molecule with masses m1 and m2. 
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A particle with mass m and velocity v, that is with momentum p = mv has the angular 
momentum L = r x p with respect to a point at a distance of r from the point. By using 
the Schrödinger equation for a diatomic molecule, which we regard as two particles 
moving around the center of mass, we can calculate the energy Eigenvalues for the  
system. We use the momentum operator pop = - ∇hi . With L = r x p we get the operator 
in the z-direction to 
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Here, we have moved from Cartesian coordinates to polar coordinates just as we did when 
solving the Schrödinger equation from the beginning for hydrogen. If we do the same in 
both x and y-direction we can evaluate the L2 operator, that becomes: 
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When an operator operates on a function we obtain an Eigenvalue. Let us examine what 
happens when we operate with L2 on the wave function ψ  so that we get an equation of 
the form: 
 
Operator ψ  = konstant ψ 
 
Here the operator can be Lx, Ly, Lz and L2. If we assume the wavefunction has the form as 
earlier: 
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It is most simple to operate with the Lz operator, which we derived to be 
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Since we only operate on Φ(φ) we can neglect R(r) and Θ(θ) why we get 
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This first order differential equation has the solution φπφ ime2)( =Θ  
Here ,...3,2,1,0=m why the function Φ(φ)  only can assume one value if the angle φ  is 
changed by 2π. This is why we directly get an Eigenvalue for the Lz operator: 
 

hlz mL =  
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, so the quantum number ml gives one z-component of the angular momentum to an 
electron of the state n, m, ml. The same holds for a molecule since the derivation was the 
same. 
 
If we suppose that [ ] [ ])()()()()()( φθφθ ΦΘ=ΦΘΩ rRbrR  
Here b is the Eigenvalue of the equation. As we did earlier we can neglect R(r) since the 
operator Ω does not operate on R(r). After division with  and with the equation ΘΦ2h
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In the Schrödinger equation we got 
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The reason for choosing the constants value to l(l+1) is just to make the expressions 
simpler, so we can derive integer quantum numbers, just as we did in the case of the 
hydrogen atom. Here we see that one has a solution if l = 0 or a positive integer greater 
than or equal to lm . Otherwise there is no simple solution. 
 
 
Thus, we have got  )1(22 += llL h
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The quantum number l determines the size of the total angular momentum. 

With a simple mechanical model for the rotational energy, 
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quantised and that it can only have values according to: 
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is called the rotational constant. The B-value is given in the energy unit cm-1 in scientific 
literature. The allowed transitions of a diatomic molecule are separated by an interval of 
2B, which can be seen in molecular spectra. If we can define a spectral line it is also 
possible to calculate the moment of inertia and the separation distance between the atoms 
(bond length). If the moment of inertia has been determined we can directly determine the 
B-value: 
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The quantised rotational energy can be derived in a similar way, and is within molecular 
spectroscopy given as a function of the rotational quantum number J according 
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For a stabile diatomic molecule the so-called selection rules gives the possible rotational 
transitions . For molecules like HCl and CO, the transitions occur at lower 
energies since the centrifugal force prolongs the molecule and makes the moment of 
inertia large. In the expression above, we have to add terms describing the prolongation, 
namely DJ

1±=∆J

2(J+1)2 etc. 
If you travel upwards in the energy diagram, the energy levels will become closer to each 
other. One says that the Born-Oppenheimer approximation does not hold anymore. The B-
value will be reduced and we can write: 
 

 

 







 +−=

2
1υαυ eBB

där α [cm-1] är en konstant. 
 
Let us now summarize and describe the total energy, T(υ,J) , for a diatomic molecule with 
both contributions, the rotational as well as the vibrational part: 
 
T(υ,J) = G(υ) + F(J) 

 
 
 

8.5 Molecular spectra 
 

The normal observed molecular spectrum includes vibrational-, rotational- or electronic 
transitions. For a diatomic molecule the electronic states can be represented in a diagram of 
potential energy as a function of the internuclear distance. Electronic transitions correspond to 
nearly vertical lines on such a plot, since the transition occurs rapidly why the internuclear 
distance does not change especially much during the process. Vibrational transitions occur 
between vibrational levels of the same electronic level. Also rotational transitions appear on a 
common vibrational level, even though there are examples of combinations of vibrational-and 
rotational transitions for light molecules. 
 
 
  
 
8.6 Rotational spectra 
 
Electromagnetic radiation can excite the rotational levels of the molecule if it has an electric 
dipole moment. The field influences the molecule and the spectra of rotational transitions lay 
typically in the microwave region of the electromagnetic spectrum. The transitions between 
vibrational levels give rise to larger energy differences. In general the energy of a vibrational 



Modern Physics  Chapter 7-8 18

level is round 0.1eV while the rotational transitions are at least two orders of magnitude 
smaller, around 10-3 eV for rotational transitions. 
Let us study the CO-molecule where the fundamental band can be found in the infrared 
wavelength region around 2100 cm-1 or 5 µm. The spectrum is symmetric around its center, 
the so called zero gap: 
 

 
The CO-molecules infrared spectrum between 2000-2300 cm-1, around 5 µm. 
 
 
 

  

 
Rotational spectrum of the SrH molecule (unit cm-1). The notation (0,0) stands for a transition 
between υ = 0 of the excited level to the υ = 0 of the ground level. P, Q and R are notations for 
rotational transitions of rotational spectra. 
 

As a conclusion, we can say that the key word in modern physics is quanta and quantum 
physics. We have achieved discrete levels for electronic, vibrational and rotational energies. 
Classically we would have got continous spectrum, making it impossible to study these 
rotational and vibrational spectra 
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Learning goals 
Determine the wavelengths of transitions of the hydrogen atom with Balmer’s formula 
Describe Bohr’s three postulates and its consequences 
Determine energies of hydrogen and hydrogen like atoms 
Describe X-ray spectra 
Determine the cut-off wavelength 
Describe Mosely diagrams 
Discuss the laser principle 
Discuss different types of molecular bonds 
Calculate vibrational energies at different quantum numbers 
Give an overview of how the rotational energies appear 
Calculate rotational energies for different quantum numbers 
 
 
Advices for learning 
Think of how one with the Balmer formula just could calculate wavelengths 
With Bohr’s postulat the Balmer formula could be explained 
Characteristic X-ray spectra could be explained with Bohr’s model 
Study the principle of the laser and the requirements for lasing 
Be observant for different types of molecular bonds 
Compare atoms and molecules with respect to energy calculations 
  
Readings 

• Thornton, Rex, Modern Physics, Saunders 
• Krane, Modern Physics, Wiley 
• Beiser, Concepts of Modern Physics, McGraw-Hill 
• Serway, Moses, Moger, Modern Physics, Saunders 
• Eisberg, Resnick, Quantum Physics of Atoms, Molecules, Solids and Particles, Wiley 
• Blatt, Modern Physics, McGraw-Hill 
• Halliday and Resnick, Fundamentals of Physics, Wiley  
• Blatt, Modern Physics, McGraw-Hill 
• Benson, University physics, Wiley 

 
WEB-readings 

• http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html 
• http://nobelprize.org/nobel_prizes/physics/laureates/1901/rontgen-bio.html 
• http://nobelprize.org/nobel_prizes/physics/laureates/1910/waals-bio.html 
• http://nobelprize.org/nobel_prizes/physics/laureates/1922/bohr-bio.html 
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