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9. Solid state physics 
 

 
The ISS-station where the solar cells has a power of 250 kW  
 
9.1 Introduction 
When you want to describe solid-state physics, one can start with looking at the interaction 
between a large numbers of atoms in a crystal grating. On can start with looking at the electric 
and thermal properties of materials, such as conductivity.  
 
Let us classify solids according to their electrical properties. 

1) The resestivity ρ at room temperature, ρ = RA/l (Ωm) ↔ R= ρl/A (Ω)  
2) The temperature coefficient α defined as α =  (1/ ρ)(dρ/dT)  (K-1) 
3) The number of charge carriers per volume unit n. (1/m3) 
  

By measurements one finds that some material does not conduct currents, i.e. that have a very 
high resistivity, and are called isolators (diamond has a factor of 1024 higher resistivity than 
copper). Another isolator is polystyrene with a ρ-value around 105 Ωm. 
One may use measurements of ρ, α and n in order to divide the non-isolators, at least at 
modest temperatures, into two main groups, metals and semiconductors. 

• Semiconductors have much higher resistivity than metals 

• Semiconductors have a negative and large temperature coefficient 
• Semiconductors have much less charge carriers per volume unit than metals 

 
Let us start with the electrical conductivity and examine how it changes with temperature. 
We start with a conductor and measure the voltage (V) and current (I). By applying Ohm’s 
law we get V = RI where R is the resistance (Unit: ohm, Ω) of the conductor. 
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When studying the factors responsible for the resistance, one finds from basic electricity: 
The resistivity ρ = ρ0 (1 + α∆T) where ρ is measured in the unit [Ωm], and T is the 
temperature in the unit Kelvin and where α is a temperature constant measured in T-1 which is 
specific for the metal in question. For copper the constant has the value ρ0 = 1.7x10-8 Ωm at 
T0 = 273 K and α = 4x10-3 T-1. If we compare with a semiconductor as silicon (Si) the picture 
changes drastically as is shown in the picture below. Si has the resistivity ρ0 = 3x103 Ωm, α=-
7x10-2 T-1 within the right part of the curve for silicon. 

 
 
These macroscopic effects in crystals will be discussed later and be possible to explain with 
the theory of solid-state physics. We will look at different crystals, the band theory, isolators, 
semiconductors and the properties of the elements of solid-state physics.  
 
The large variations in resistivity ρ (or conductivity σ = 1/ ρ) , mainly depends on the large 
variation in n (i.e. the number of charge carriers/m

3)  
This relation can define the conductivity: 
 
j =  σ E  
     
j = ξ vd =  ξ vd = ±| ξ | vd = current density vector,  [j] = A/m2  
ξ = space charge [ξ ] = As/m3   
E = Electric field vector, [E] = V/m 
vd = velocity of the space charge =  the mean drift velocity of the electrons in the electric field  
E , that builds up the current. 
 
The mobility µ (>0) is defined by the relation  
 
vd =  ± µE 
 
(± since the electrons get a velocity directed opposite to the electric field). 
From these relations we also get the following condition 
 
σ = ξ µ  
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9.2 The forces within crystals 
A crystal differs from other atomic constellations by its three-dimensional periodicity 
concerning the positions of the atoms. One can create a crystal by starting with a unity-cell 
and then let it be multiplied in all three directions. A cubic crystal is easy to expand, but if you 
have a pentagon, it becomes more difficult. The same holds for the creation of a two-
dimensional crystal. In that case it is possible to build it with quadratic elements, other 
parallelograms, triangles, hexagons etc, but not pentagons as unit cells. 
Crystal structures were examined in the beginning of 1900 by applying X-ray spectroscopy. 
X-ray is excellent to use since the wavelength of the radiation is of the same order as the 
distance between crystal planes.  
 
X-ray diffraction. Solid-state physics is looking for a connection between materials 
macroscopic properties and its microscopic properties, as well as its atomic and nuclear 
structure. One also wants to study its composition, discuss various models and properties. One 
can ask what kind of atoms (chemical identification) we have in the crystal structure and how 
they are sitting in the crystal geometrically. In most materials, the atoms are arranged, at least 
locally, in well-defined crystal structures. In order to determine the crystal structure different 
forms of diffraction techniques are applied. The most common and most powerful technique 
is X-ray diffraction (XRD). In order to study crystal structures of atomic distances of a few 
Angstroms, one has to use wavelengths of the same order. One often applied X-ray source is 
Cu K

α 
with wavelength 1.54 Å. X-ray diffraction within crystals can be regarded as 

interference between reflexes from closely laying atomic planes of the same layer, according 
to the figure below. 
 

 
Bragg reflexion for X-rays between two crystal planes. 
Constructive interference when 2d sinθ = pλ, p = 1,2,3,…. 
 
The incoming ray can be described by the wave vector k, and the reflected ray by the wave 
vector k'. The wave vector change is ∆k = k - k'. In order for constructive interference to 
occur, Bragg’s law holds:  
 
2dsinθ = λ,  
 
where d is the distance between two crystal planes. Observe that in this equation, θ is the 
angle of grazing incidence and not the angle of incidence. 
 
When performing X-ray photography using a grating spectrometer with a cubic grating, one 
gets fourfold symmetry, as can be seen in the picture below.  If the crystal is rotated along a 
diagonal one can achieve threefold symmetry and in that way orient the symmetry lines of the 
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crystal. In order to get a spectrum like this, the X-ray beam has to consist of a continuous 
spectrum (as in the case of Bremsstrahlung) 
 

 
 
Laue diffraction pattern for a cubic crystal 
 
 
___________________________________________________________________________ 
Example 
An X-ray beam hits a cubic crystal along one of the cubes axis. One observes a diffraction 
spot at 90,0o degrees with respect to the incoming beam. Earlier one has determined the 
wavelength of the X-ray radiation to be 2.5 Å (0.25 nm). 
Calculate the grating constant of the cubic crystal (the distance between the atomic layers). 
Solution 
Since the angle of the incoming beam with respect to the reflected beam is 90,0o, the angle of 
grazing incidence must be 45o according to the figure below. 

 
The distance between the atomic layers must be 

2
d . With the Bragg formulae one gets 

nmd o 25,045sin
2
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d = 0.25 nm 
___________________________________________________________________________ 
 
 
9.3 Ionic crystals 
The Coulomb force is the dominating interaction between the charges of the ionic crystals in 
almost spherical symmetry. One normally takes NaCl as an example of an ionic crystal. It is a 
so-called ”face centred cubic, fcc” crystal that can be seen in the figure at different angles. 
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A NaCl crystal seen at 3-dim., and a cut through the atomic layers 
 
We can also study the CsCl-crystal, a simple cubic crystal (simple cubic, sc). Here, the 
number of equidistant neighbours is 8 the so-called coordination number. 
 
 
 

 
CsCl with a simple cubic form 
 
Let us look at NaCl again. NaCl has the coordination number 6, i.e. there are 6 closest 
neighbour atoms. If we for a moment suppose that the interaction between the other 
neighbours can be neglected, the potential energy will become 
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Here, a is the distance to the closest neighbour atom. If we expand the study and also look at 
the 12 closest neighbour atoms that have the same sign, not looking at the 6 first, and the next 
8 that have opposite sign, we get 
 

a
e

a
e

r
eV

j j 0

2

0

2

0

2

4
...

3
8

2
126

44 πε
α

πεπε
=








−+−−=−= ∑  

 
Here α is called the Madelung-constant. It thus depends on the build-up of the crystal and not 
on the type of ions. 
_________________________________________________________________ 
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Example 
Suppose we have a fictive linear ionic crystal where our mission is to determine the constant 
α, the Madelung-constant for the crystal. 
Solution 

 
The potential energy for a charge is given by the following expression: 
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The factor 2 depends that we do the calculations in both the left and the right directions. 
Within the parenthesis, we have an alternating series, 1/1-1/2+1/3-1/4+…, that has the sum 
ln2. The Madelung-constant gets the value α = 2ln2 = 1,39. 
_________________________________________________________________ 
 
9.4 Covalent crystals 
The covalent forces are much weaker than the ionic crystal. Covalent crystals have low melt-
and boiling temperature. H2, CH4, CO, CO2, C6H6 are examples that can give rise to. 
Let us take the hydrogen molecule as the simplest example to describe the covalent forces. 
The H2-molecules two electrons move in a way that their charge distribution only is 
symmetric looking at a time average. The probability can be large for the electrons to be in a 
part of the molecule that makes it possible to attract another H2 molecule etc. In such a way a 
weak bonding appears. 
 

 
4 orbitals of the CH4 molecule  
In the figure we see that there are four electron orbitals that have their origin at the carbon 
atom, C, directed towards the corners of a tetrahedron. The valence bonds of CH4 appears 
from each of those tetrahedral orbitals and one 1s orbital from H.  Also semiconductors as 
silicon and germanium are crystals with this tetrahedral structure. 
 
 
9.5 Metallic crystals 
One feature for metals is that they are good conductors for electric currents. In metals there 
are free electrons transporting the charge. The metals have in their outer shell weekly bound 
electrons. The electrons are moving just as molecules of a gas, an electron gas: 
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Electrons are moving in the metal just as a gas 
 
9.6 Energy model 
We can regard a crystal as a 3-dimensional box with the side a. The electron can move freely 
within the dimensions of the box. Earlier, we derived an expression for a ”particle in a box” 
that only moved in the X-direction. Let us now generalise to three dimensions and we 
introduce three quantum numbers, n1, n2 and n3, all integers ni = 1,2,3,…with i = 1,2,3. 
 

 

 
 
The discrete energy levels can be described by the quantum numbers: 
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n1, n2, n3, = 1,2,3,…. 
 
Here, the value of a is relatively large since the crystal >> atom. 
 
 
9.7 The Fermi-distribution function 
Let us consider a metal with an electron gas. We let the energy be u.  The function f(u) 
describes how many electrons have the energy u of the metal. uf   is the so-called Fermi-
energy. At the temperature T = 0, no electron has energies above the Fermi-energy. This is 
shown in the graph below: 
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We let the temperature rise so T>0 K.  
This means that  f(u) =1/2 when u = uf. 
 

 
 
We observe that a small part of the electrons of the electron gas will have energies greater 
than the Fermi energy uf. The Fermi function can be derived to the following rather simple 
expression: 
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Here N/V is the density of free electrons. 
 
 
 
The Fermi distribution function contains components that can be found in the Plank’s law of 
radiation. One can describe the distribution function f(u) as the probability for a certain energy 
state with the energy u, where uf  is the Fermi-enery. In the function, there is a constant k = 
1.38 10-23 J/K which is the Boltzmann constant, and the parameter T , which is the absolute 
temperature of the Kelvin scale. 
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When T  0 K then the Fermi  function  f(u) 1. → →
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Example 
At a certain energy u we have f(u) = 0.75. How many electrons in average do we have for 100 
states in an energy interval du around u? 
Solution 
f(u) is the mean population number => The number of states will become f(u) x 100 = 0.75 x 
100 = 75 electrons  
______________________________________________________________________ 
Example  
Calculate f(u) for u=uF – 0,1 eV and u=uF+0,1 eV at T=0 and 300 K 
Solution  

1
1)( /)( +

= − kTuu Fe
uFormula:  f

 

 
 
The Fermi energy distribution function 
Fermi also gave an expression for the energy distribution of an electron gas, where it has 
energies between u and u+du according: 
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We see that the Fermi-function                                       is implemented in the expression and 
below one can see a diagram that describes the distribution: 
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We see that at T = 300K, there are energies found above the Fermi energy uf. The distribution 
at T = 0K is also seen in the diagram. The right part of the function is dominated by u  and 
close to the Fermi energy of the Fermi function:                                    1( =f
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The Fermi energies of metals 
 
Metal   Fermi energy eV 
Li   4.7 
Na   3.1 
K   2.1 
Cs   1.5 
Cu   7.0 
Ag   5.5 
Au   5.5 
 

9.8 The Band theory 
If you push free atoms together new electron levels will be created with somewhat different 
energies (due to the Pauli principle). The first excited 2s-level split and the 2s-orbitals will 
expand and the splitting will take place at larger nuclear distances for the 1s orbital. 
Generally, a crystal with N atoms will get a splitting of every atomic energy level into N very 
tightly laying energy levels. 
The difference between the highest and lowest levels varies with R (but not with N) and can 
reach around an electron volt. When a mole of a substance contains 6.022· 10

23 atoms, one 
realizes that the levels are placed so tightly that they form a band. 
 
 Let us summarize: 
� The valence electrons in a metal are close 
� The Pauli-principle says that the outer electrons energies must differ somewhat 
� An ENERGY BAND will form 

 

 
 
In the figure above you can see the energies of sodium and the chlorine atom. We see the 2p 
state of the atom and the band of the crystal. The energies of the sodium crystal correspond to 
the energy levels of the atom and can just have the energies within the energy band. Some 
bands can overlap if they arise from different atomic states, since in that case the quantum 
numbers will be different. The electrons get a continuous energy distribution of allowed 
energies. In other crystals there are forbidden bands, which is energy areas not allowed for the 
electrons. The electric properties of a crystal are determined both of its energy band structure 
and how these bands are filled of electrons.   
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In the figure below one can see the energy crystalline and atomic sodium. 
 

 
 
So, atomic sodium has one electron in its 3s state. This means that the corresponding energy 
band of the crystal only can be half filled, since the atomic 3s state can have two electrons. If 
one adds an external electric field over crystalline sodium, the electrons will gain extra energy 
in spite of being in their original energy band. This extra energy, of the form kinetic energy, 
will contribute to the electric current for electrons in motion. So, sodium is a good conductor 
for electric current, just as all metals with partially filled energy bands. 
 
9.9 Metals, isolators and semi-conductors 
Let us compare metals, isolators and semi-conductors with respect to the energy structure and 
draw conclusions about similarities and discrepancies by looking at the figure below: 
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We see that metals have partly filled and overlapping bands, making the electrons move freely 
in the metal. This means that metals are good conductors with respect to electric conductivity 
and heat conductivity. Looking at semi-conductors there is only a small energy gap between 
the valence and conduction bands. Thus it is possible for the semi-conductors to conduct 
electricity by implanting atoms in the crystal, i.e. doping of the crystal. If we then look at the 
isolators, we see that the distance between the valence and conduction bands is large. We thus 
have difficulties to excite electrons from the valance band to the conduction band. That is why 
the isolator’s properties of conduction differ from metals and semi-conductors. 
We can examine how easy it is to move electrons from the valence band to the conduction 
band. Looking at an isolator the band gap is relatively large. For diamond the band gap 5.5 
eV. Using the Boltzmann distribution function we can estimate how much thermal energy an 
electron can have at different temperature T. 
 

kTEEeNN /)(
0
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Here k = 8,62 10-5 eV/K is the Boltzmann constant. 
 
N/N0 is the relative population of atoms at the energy E compared to the population N0 with 
energy E0.  
 
 Example 
What is the relative probability that an electron can jump from the valence band to the 
conduction band of diamond? 
 
Solution 
We put (E-E0) = band gap Eg = 5.5 eV for diamond and T = 293 K (room temperature) and 

obtains ≈××=− − )2931062.8/(5.5 5

kT
Eg -218 

 
The probability will become P = N/N0 = e-218 = 4.6x10-94 which is an extremely small number. 
The probability is close to zero. 
 
9.10 Intrinsic conductivity - doping 
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One observes a difference in conductivity where ”pure” crystals of silicon and germanium 
with high purity are compared with doped materials. Often “pure” materials are doped with 
other atoms of the order of 1:107. By choosing special dopants the crystal can get an excess of 
moving electrons or the lack of electrons, which is generating ”holes”. Ordinary semi-
conductor materials are silicon and germanium. Germanium has 4 electrons in its outer shell, 
it has 4 valence electrons. 
  

 
 
If one dope germanium with atomic As, with 5 valence electrons in small amounts, typically 1 
As-atom on 107 Ge-atoms, then you produce a free electron moving in the crystal. If you 
instead implant 1 indium atom, with 3 valance electrons, there will be a lack of electrons, or 
we can say that a positive ”hole” will be created.  
What type of charge carrier a material has can be determined by using the Hall effect. One 
puts a homogeneous magnetic field perpendicular to a crystal (in our case with the direction 
out of the plane) and one studies what happens when one sends a current through the material. 
The magnetic field affects the charges making them move towards one side of the material 
and a lack of electrons on the other side. If electrons are collected on one side, holes are 
created on the opposite side, why an electric field between the different charges appear, Ey. 
The magnetic field Bz has its direction out of the plane. 
 

 
At equilibrium between the magnetic and electric forces we get an expression for the so-
called Hall coefficient RH. The sign shows what type of charge carriers we have at hand. 
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Let us study the conductivity, σ, of semi-conductors. n-doping means an excess of electrons 
and p-doping, an excess of “holes”. The conductivity can be generalised to: 
 
σ = n e µn + p e µp 
 
Here is n, p the number of charge carriers/m3 and µn, µp is the mobility of the charge carriers. 
 
9.11 Doped semi-conductors 
By doing as in the former section we can dope a material with dopants in order to change the 
properties of the crystal. All modern materials are based on doping. In the figure above we see 
the different types, n-doped respectively p-doped materials. 
The introduction of dopants in germanium and silicon crystals can be controlled in getting a 
material of the n-type and the opposite material p-type, with only a small area in between. The 
simplest way to produce such crystals is to pick out a growing crystal, for instance melted 
germanium containing a donor, and rapidly introduce an acceptor in the melt. The first part of 
the crystal created is of n-type and the rest of p-type. 
 
One important property of a p-n transition in a crystal is that it conducts the electric current 
much better in one direction than in the other. The material works as a diode. One can show 
that the current of a circuit with a diode, where the applied voltage is V, can be described by: 
 

( )1/
0 −= kTeVeII  

 
This equation describes the diode’s characteristics. For V > 0 the diode is connected in the 
forward direction and the current grows exponentially with V. An applied alternating current 
will give a pulsating direct current. When V < 0, the diode is connected in the backward 
direction an only a weak current will be able to pass. 
The characteristics of the diode is shown in the figure below: 
 

 
 
Since kT = 0.025 eV at room temperature one will get a rather high increase in current if one 
changes the voltage by just a few tens of a volt. 
 
 
Example 
We connect two identical diodes in a series to a voltage of 1.000 V. One is connected in the 
forward direction and the other in the backward direction. 
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Determine the current in the circuit and the voltage across each diode; diode 1 and diode 2. 
 
It is the same current that flows through the two diodes:  I1 = I2 
We get the following equation for the current (the diodes characteristics): 

)1()1( /000,1(
0

/
0 −−=− −− kTVekTeV eIeI  

We see tat the exponential of diode 2 is <<1, which gives e       11/ ≈−kTeV

We take the logrithm and gets 
V2 = kT ln2 = 8.862x10-5x300xln2 = 0.0179 volt 
The voltage over diode 1 is then V1 = V – 0.0179 volt = 1.000 – 0.0179 volt = 0.982 volt. 
The current through both diodes is I1 = I2 = I0. 
 
Since the thin layer, dF, between the p-and n-layers normally contains few charge carriers, this 
region must have a high resistance. When you put on a voltage making the current go in the p-
n direction, the layer is decreased in size considerably but also the resistance. The diode will 
make it easier for the current to pass in this direction. That is why IF gets a high value. The so-
called drift current Idrift has the same size all the time. If you then connect the diode in the 
opposite direction, namely in the n-p direction, the middle zone will expand considerably and 
also its resistance. The width dF will become bigger, which means that the diode has 
difficulties in conducting the current in the backward direction. This can easily be seen in the 
figure below: 
 

 
 
If we connect the diode to a circuit an puts on an alternating Vin = V0 sin 2πft, where the 
voltage source has the frequency f or the period T = 1/f. We study the situation graphically 
and study the outgoing voltage Vut. We will obtain a pulsation direct current. 
 

 
9.12 The LED-diode (Light Emitting Diode) 
How can a p-n transition generate light?  When an electron in the conduction band 
recombines with a hole in the valence band, energy corresponding to the band gap Eg is 
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transmitted.  In many semi-conductors this energy is transferred to create thermal energy in 
the vibrating crystal. In other semi-conductors, containing gallium arsenide (GaAs), a photon 
can be emitted with the wavelength 
 
 λ = c/f =  c/(Eg /h) = hc/Eg   
  
The material has, in order to be able to emit much light, in order to function as a LED, have 
enough number of electron-hole recombinations. However, in intrinsic, pure, semi-
conductors, the number of electron-hole pairs are few. A doped semi-conductor does not work 
either. Surely the number of electrons raise, but not the number of holes. What is needed is a 
semi-conductor with many electrons in the conduction band and simultaneously many holes 
in the valence band. It is possible to make a heavily doped crystal with a voltage in the 
forward direction of a p-n transition, and at the same time have a large current passing the 
diode that is injecting electrons on the n-side and holes on the p-side. If the doping is large 
enough the middle region will be very small, perhaps a few micrometers wide. This will result 
in a large density of electrons and a great density of holes, only separated by the thin region. 
As a result we will have a lot of recombinations with the corresponding emittance of light 
from that small zone. Commercial LED’s are designed for visible light and are often based on 
gallium doped with arsenide and phosphor.  
 
9.13 The photo-diode 
By letting a current pass through a p-n transition one can generate light. The opposite is also 
true. If we let light fall on a suitable p-n transition one can obtain a current in the circuit 
where the transition is a part.  This is the basis of a photo-diode.    
 
9.14 The junction laser  
In a junction laser there are many electrons in the conduction band of the n-side and many 
holes of the valence band of the p-side. This population inversion is a requirement to obtain 
laser action. When an electron jumps from the conduction to the valence band it can stimulate 
(trig) another electron also to make a jump, and if the current is high enough it is possible to 
chain reaction if the ends of the crystal are flat and parallel. In this way a p-n transition works 
as a junction laser, often used in CD-players. The wavelength is most often found in the IR-
region (λ  = 1,31 and 1,51 µm). 
  
9.15 The transistor and the integrated circuit 
A transistor is a semi-conductor crystal consisting of two p-n transitions and that can be built 
as an n-p-n or a p-n-p crystal. If we first study an n-p-n type where electrons are the charge 
carriers, while the p-n-p transistor work with a ”hole” current. The ends of the transistor, 
which are called emitter and collector, are heavily doped, while the middle region is weakly 
doped. This region is also very thin.  In the figure below, it is shown how a transistor can be 
connected. The emitter-base-circuit is put in the forward direction. One connects the voltages 
positive pole to the p-doped material. 
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From the emitter’s conduction band, many electrons reach to the base, which potential and 
energy are lowered by eVe. Since the base is thin, most electrons reach the p-n transition 
between base and collector, connected in the back direction. The electrons coming from the p-
side can in this way continue to the collector. 
How does a transistor work? If you do a small change of the signal on the n-side will get a 
large change of the current from the emitter due to the steep rise of the diode curve (see the 
diode). The large change in the current will give rise to a large change in voltage over the 
resistor (large resistance) on the exit of the transistor. The transistor works as a voltage 
amplifier. 
 
 
9.16 Solar cells 
A solar cell is a thin layer of doped semi-conductor material that converts light to electricity. 
A typical material is silicon that has an efficiency of 15 – 20%, which means that an area of a 
square decimetre will give 1.5 W. With a voltage of 0.5 V, this means 3 A. The solar cells are 
then connected parallel and in series to obtain the right voltage and high enough current.  

       
          Solar panels of the ISS space programme 
 
9.17 Amplifiers for rock and roll guitars 
In the 60:ies the amplifiers were made by electronic tube devices and gave, due to the high 
level of amplification, a heavily distorted sound. Later, when transistors replaced the 
electronic tubes, the sound became more “pure”, which did not make all artists happy (Jimi 
Hendrix). 
 
9.18 Integrated circuits and other electronic devices, consist of thousands or even millions of 
transistors. There are also passive components as capacitors, solenoids and resistors. They are 
manufactured in one unit of semi-conductor material, one semi-conductor chip, which 
constitutes the integrated circuit. 
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Example of an integrated circuit with thousands 
of transistors. 
 
9.19 Super conductivity 
Kammerling Onnes discovered that the resistance of mercury almost vanishes when the 
temperature was close to 4K. That is why the term super conductivity arouses and that has an 
enormous technological potential. This means that the current in a circuit can flow without 
thermal losses. One has obtained electric currents in super conducting materials that has been 
flowing for years without diminishing in strength. In the figure below one can see how the 
resistance changes with temperature. 
 

 
 
One can explain super conductivity with the fact that the electrons constituting the current 
consist of coordinated pairs. One of the electrons of the pair can disturb the molecular 
structure of the super conducting material when they move in the conductor. The other 
electron of the pair is attracted by the positive charge of the material. One such is that the 
coordination of the pairs hinders them to collide with the molecules of the material. In this 
way the resistance of the material is eliminated. 
 

10. Nanophysics 
Nanophysics and nanotechnology are some of the most exciting research fields today.  
The word nano comes from the Greek word for dwarf or small. When nano is used as a prefix 
it means one part in a billion (1:109). Objects of sizes between 1 and 100 nanometres, in short 
nm, are sizes within nanotechnology. Atoms are smaller than one nm, molecules and cells 
vary in size from 1 to several nm. One nanometre (nm) is so small that it can not be seen in an 
ordinary light microscope. Nanoscience and nanotechnology deals about study and create 
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material structures of sizes 1- 100 nm (as a comparison, the hydrogen atom with the electron 
in the inner shell has a diameter of 0.1 nm). 
Researchers work with materials on atomic levels and create materials and components with 
new properties – to be used in micro electronics and bio medicine. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

At KTH there is a modern nano laboratory for creating small structures in cooperation with 
many institutes like the KTH Kista electronic departments among others. 
 
 
 
 
 
 
Nano technology is a term used for many scientific areas and cross-disciplinary cooperation 
and is often a requirement to solve nano-related scientific problems. 
Nano technology is a natural development within several technological areas. Within 
electronics one has made the transistors and IC circuits smaller and smaller in order to make 
them faster and to reduce the size of the computers as well as more reliable. The instruments 
and apparatus one has constructed within microelectronics have made it possible to study very 
small parts of Nature like Gecko-feet, and other materials of nano size. Molecules and cells 
has always been nano technology, but now there exists possibilities to connect biology and 
electronics. 
 

 
 
One can ask oneself if nano particles are dangerous, which depends of if things are of nano 
size, or if they belong to a nano structured surface. If there is an emission of nano particles, it 
can be dangerous, since it can hurt the lungs if they enter them. But nano particles are already 
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around us, for example in the exhaust from traffic, toning powder from copying machines or 
laser printers. A nano structured glass surface to keep it clean does no emit particles. 
 
Devices for studying small objects: 
 
Neutron scattering 
The applications of neutron scattering spans over a wide field of great importance; material 
science, energy research, nano-and biotechnology as well as medicine. Today there are some 
100 researchers in Sweden using neutron scattering within their research. They are 
represented in most fields of Natural science; chemistry, physics, material science, 
biochemistry, biophysics, medicine and geology. 
In Sweden there is a large neutron scattering laboratory at Studsvik but there are several all 
over Europe and further away. 
 
Electron microscopy 
The electron microscope is a useful instrument for studies of small structures and gives 
information about magnetic and electric information of a sample. With different methods as 
electron diffraction and spectroscopy the properties of materials can be determined down to 
1Å. A focused electron-or ion beam can be used to analyse or to structure materials on nano–
meter level.  
 

 
 
The resolving power of a microscope can be estimated with the Rayleigh criterion:
  

 
 

 
Dc
λθ 2,1=

 
Here θc is the critical angle for resolving an object. The smaller the angle, the smaller objects 
can be resolved. D is the diameter of the lens or the entrance of the system and λ is the 
wavelength of the radiation. An eye with an circular opening of 6 mm can resolve objects 
down to around 10-4 m. 
Example 
We look at an object from a distance of 25 (distance for clear seeing). Can one see an object 
of the size b = 0,1 mm?  
Solution 
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We put the diameter of the iris to D = 3 mm and with the wavelength λ = 550 nm. We use the 
Rayleigh criterion and gets θ = object/radius = b/R = b/(0.25 m) 
 

Dc
λθ 22.1=        ⇒

D
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b is around 0.1 mm, which fits with the figure above. 
 
Electron microscopy contributes to the search for unique materials both within applied and 
basic science by analysis on atomic level. With this knowledge a materials meso-and 
macroscopic properties and the connection between its structure and its mechanical properties 
can be characterized.  
 

 
 
An electron microscope wit a resolving strength of 100 000 times 
 
Electron microscopy is suitable for studies of structural changes and properties of polymers, 
metals, ceramics, and biological materials. Nano-crystalline materials with sizes between 1 
nm 10 nm show quite new magnetic, electric and optical properties. High resolving electron 
microscopy is a powerful technique to study the orientations of crystals, phases, and chemical 
composition of a electron transparent sample.  
The shorter the wavelength λ the smaller objects can be observed.  
 
Example 
We can try to estimate the smallest object that can be observed in an ordinary electron 
microscope. Suppose that the acceleration voltage is 120 V. The deBroglie-wavelength can be 
determined. 
 
We calculated the velocity in section 3.3 with deBroglie’s postulate λ = h/mv when electrons 
were accelerated across 120 V. We got the result λ = 1.12 Å, which is the limit for resolving a 
small object, which fits with the figure above describing enlargements.  
The limit is around 10-10 m=1 Å.  
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The electron beam interacts with a magnetic sample and is used to study and visualize 
patterns of domains as well as magnetization of one-domain particles. In order to accomplish 
this, one can apply electron holography and perform magnetic observations with so-called 
Lorentz microscopy.  

Spintronic applies the electrons spin to observe information. The spin is possible to measure 
due to its magnetic properties if one can align the spin one can use the magnetic North and 
South poles to represent 1 and 0. This means that one can build an electronic circuit much 
smaller than what is possible using ordinary electronics. 

Qunatum bit, or qubit, from quantum binary digit, represents the smallest unit of quantum 
information. There is a fundamental difference between a qubit and a classical bit. The 
classical bit can have the value 0 or 1. A qubit corresponds to a quantum state and can have 
the value 0 or 1 but also a linear superposition of these states, a so-called quantum 
superposition. 
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Learning goals 
Be able to describe conductivity and other electrical properites 
Be able to describe the temperature dependence of conductors and semi-conductors 
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Calculate the conductivity of meatls and semi-conductors 
Be able to describe about mobility 
Be able to describe X-ray diffraction in crystal studies 
Calculate the grating constant with the Bragg formula 
Be able to describe ionic crystals 
Calculate the Madelung constant in simple grating models 
Discuss energy models of crystals 
Calculate energy states at different quantum numbers 
Be able to generally describe the Fermi energy derivation 
Calcualte the density of free electrons in crystals with the Fermi expressions 
Be able to describe the energy distribution in crystals 
Perform calculations with the Fermi function 
Be able to describe the band theory 
Discuss the difference between conductors, semi-conductors and isolators 
Be able to describe conductivity and holes 
Be able to describe the Hall effect and do calculations on this effect 
Describe doped semi-conductors and other solid-state instruments 
Be able to describe super conductivity 
Be able to generally describe nano physics and nano technology 
Describe methods for studies of small objects 
 
 
 
 
 
 
Advices for reading 
Think of the fact that one uses general electric studies to characterize materials within solid- 
state physics 
Study electric conductivity, Ohm’s law and mobility 
X-ray methods can be used when studying crystals since the wavelength is of the same size as 
the objects 
With simple models one can describe crystal structures 
Energy models are used here as well as in atomic physics 
Fermi distribution made a breakthrough in the description of crystal structures 
Think of that band theory makes a bridge between atomic physics and crystal physics 
Think of that the doping concept is important in semi-conductor physics 
Solid state-physics has lead to a development of technology and applications 
Nano physics is an area leading to many new applications about electronics, new material and 
fast computers 
 
 
Readings 

• Thornton, Rex, Modern Physics, Saunders 
• Krane, Modern Physics, Wiley 
• Beiser, Concepts of Modern Physics, McGraw-Hill 
• Serway, Moses, Moger, Modern Physics, Saunders 
• Eisberg, Resnick, Quantum Physics of Atoms, Molecules, Solids and Particles, Wiley 
• Blatt, Modern Physics, McGraw-Hill 
• Halliday and Resnick, Fundamentals of Physics, Wiley  
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• Blatt, Modern Physics, McGraw-Hill 
• Benson, University physics, Wiley 

 
WEB-addresses 

• http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html 
• http://nobelprize.org/nobel_prizes/physics/articles/lecuyer/index.html 
• http://nobelprize.org/nobel_prizes/physics/laureates/1956/index.html 
• http://nobelprize.org/nobel_prizes/physics/laureates/1985/index.html 
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