Modern physics Exercises Chapter 11-12

11.1.1 ²¹²Po has a half-life of 0.30 μs. How long does it take until only 1/16 of the original nuclei of a sample remains?

Answer: 1,2 µs

11.1.2 Calculate the number of atoms in 1.0 g of 226 Ra. The Avogadro's number is 6.026 x 10^{26} atoms/kg.

Answer: 26.7×10^{20} atoms.

11.1.3 The half-life for radium 226 is 1620 years. Use the problem above to calcualte the activity of 1,0 gram radium.

Answer: 3.6×10^{10} decay/s. This is the equal to 1,0 Curie that earlier was the definition of activity, i.e.1 Ci.

11.1.4 One measures a deacay rate of 735 α -particles/minute from 1,0 mg ²³⁸U. Determine the half-life of ²³⁸U.

Answer: 4.5×10^9 years

- 11.2.1 α-particles from ²¹⁰Po has an measured kinetic energy of 5.3 MeV. How large is the decay energy Q? Answer: 0.122 MeV
- 11.3.1 One studies a free neutron that decays to a proton The half-life is 12,8 minutes. One measures the maximum kinetic energy for the electron to 781 keV. Determine the mass of the neutron.

Answer: 1,008663 u

11.4.1 ⁶⁰Co decays through β -decay to an excited state of nickel, (⁶⁰Ni). After that a γ -photon with the energy 1.173 MeV is ejected and thereafter a new γ -photon is ejected with the energy 1.333 MeV down to the ground state of ⁶⁰Ni. Determine how big the power is, that 1.0 g ⁶⁰Co generates.

Answer: 16 W

11.4.2. One wants to perform an age determination with the Carbon-14 method on a sample containing 1,0 gram carbon. One measures the activity to 0.415 decays/minute performed during 24 hours. The original activity was 0.233 decays per gram and second.

Determine the age of the sample.

Answer: 2.9×10^4 years

11.5.1 One achieves a fusion between deuterium and tritium, i.e. between ²H and ³H and gets ⁴He and a neutron.
Calculate how much kinetic energy that is achieved in the reaction.

Answer: 17.6 Mev

11.6.1 We shoot neutrons onto ²³⁵U in order to create ²³⁶U. The potential barrier of 5,3 MeV has to overcome in order to make the fission to occur. Investigate if fission is possible with slow neutrons.

Answer: The mass difference gives the energy 6.1 MeV which is larger than the barrier, why it is enough with slow neutrons with $E_k = 0$