
REGLERTEKNIK

School of Electrical Engineering, KTH

EL2520 Control Theory and Practice – Advanced Course

Exam (tentamen) 2013–05–25, kl 09.00–14.00

Aids: The course book for EL2520 (advanced course) and EL1000/EL1100 (ba-
sic course), copies of slides from this year’s lectures, mathematical tables
and pocket calculator. Note that exercise materials (övningsuppgifter,
ex-tentor och lösningar) are NOT allowed.

Observe: Do not treat more than one problem on each page.
Each step in your solutions must be motivated.
Unjustified answers will results in point deductions.
Write a clear answer to each question
Write name and personal number on each page.
Please use only one side of each sheet.
Mark the total number of pages on the cover

The exam consists of five problems of which each can give up to 10
points. The points for subproblems have been marked.

Grading: Grade A: ≥ 43, Grade B: ≥ 38
Grade C: ≥ 33, Grade D: ≥ 28
Grade E: ≥ 23, Grade Fx: ≥ 21

Responsible: Mikael Johansson 08-7907436

Results: Will be posted no later than June 15, 2013.

Good Luck!
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1. (a) Consider the multivariable linear system

ẋ =

[
−α− 1 0

0 −1

]
x+

[
1 1
0 1

]
u

y =

[
α/2− 1 0

0 1

]
x+

[
1 0
0 0

]
u

Determine the corresponding transfer matrix and calculate the poles and zeros
of the system. Characterize for which values α the system is stable, and for
which values of α the system is minimum phase. (4p)

(b) For which values of α is the system observable? (2p)

(c) Given the system

G(s) =
1

s+ 1

[
1 2
0 1

]
Compute the singular values of G(iω) and determine ‖G‖∞ (4p)
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2. You have been asked to design a controller for a system G with state-space realization

ẋ = Ax+Bu

y = Cx

(a) Initially, you were told that there were no disturbances acting on the system, and
that the full state vector x could be measured. You decided to design an optimal LQ
controller and use a criterion on the form

J =

∫
x2(t)

TQ1x2(t) + u(t)TQ2u(t) dt

You consider four weight choices

A :Q1 = 1, Q2 = 1 B :Q1 = 1, Q2 = 0.01
C :Q1 = 0.01, Q2 = 1 D :Q1 = 1, Q2 = 100

The corresponding responses to the same initial condition are shown in Figure 1.
Pair the responses to the weight choices above. Justify your answer! (3p)
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Figure 1: Initial value responses of the closed-loop system under LQ-optimal control for
the four different choices of weight matrices.
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(b) A few minutes after you have finalized the tuning of your LQ-controller, you learn
that it will not be able to measure both system states, but that you will have to base
your controller on a noisy measurement of the second system state,

y(t) =
(
0 1

)
x(t) + v2(t)

You conclude that the best solution is probably to design an output feedback con-
troller using LQG attempting to minimize the expected value of J . Clearly, you will
need to design the Kalman filter, but what about the feedback gains? Will you need
to redesign them as well? Justify your answer! (2p)

(c) Since you will need to use an observer-based controller, you decide to also try to
deal with a load disturbance acting on the system output. As the disturbance has a
distinct frequency content, you decide that it will be best to introduce a disturbance
model as in Figure 2.

G(s)

Gd(s)

+
u

v1

z = y + wy
w

Figure 2: Augmented system with output disturbance filter Gd(s).

To mimic the actual disturbance, you consider three filters:

A :Gd(s) =
1

10s+ 1
B :Gd(s) =

10

s+ 10
C :Gd(s) =

1

s2 + 0.2s+ 1

The corresponding w for a zero-mean unit-variance white-noise v1 are shown in Fig-
ure 3. Which realization corresponds to which filter? Justify your answer! (3p)

(d) Assume that the disturbance filter that you choose has a state-space realization

ẋd = Adxd +Ndv1

w = Cdxd

Derive a state-space model for the complete open-loop system (including the system
G and the disturbance model Gd) with u and the white-noise signal v1 as input, and
y + w as output.

Which is the order of the corresponding LQG-optimal controller? (2p)
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Figure 3: Realizations of the outputs of the three disturbance filters when driven by a
zero-mean unit-variance input.
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3. In this problem, we will study various techniques for decoupling a two-by-two system

Y (s) =

(
G11(s) G12(s)
G21(s) G22(s)

)
U(s) =

1

s+ 1

(
1 K12

K21 1

)
U(s)

(a) Compute an ideal decoupling D(s) so that

U(s) = D(s)V (s)

ensures that

Y (s) = V (s)

Explain why this decoupling is not realizable for our example system (2p)

(b) When the ideal decoupling matrix is not implementable, we have recommended
to use a static decoupling that makes y(t) equal to v(t) in stationarity.

Another possibility is to use a decoupling that retains some of the dynamics
from V (s) to Y (s), i.e., compute a D1(s) such that

U(s) = D1(s)V (s)

ensures that

Y (s) = Q(s)V (s) (1)

for some diagonal matrix Q(s). One natural choice is to let

Q(s) =

(
G11(s) 0

0 G22(s)

)
(2)

Compute D1(s) that guarantees (1) for the particular choice of Q(s) stated in
(2). Is the decoupling D1(s) realizable for our system? (3p)

(c) The decouplings considered in (a) and (b) are of feed-forward type, but one can
also decouple systems using feedback. One such technique is called “inverted
decoupling” and takes the form

U(s) = V (s) +

(
0 D̂12(s)

D̂21(s) 0

)
︸ ︷︷ ︸

D̂(s)

U(s) = V (s) + D̂(s)U(s)

Determine the values of D̂12(s) and D̂21(s) which ensure that

Y (s) =

(
G11(s) 0

0 G22(s)

)
V (s)

(3p)
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(d) When we apply the inverted decoupling to our example system, the elements of

D̂(s) become static gains. In this case, the feedback loop defining the compen-
sator is no longer well-defined (There is no dynamics in the loop, but u and v
satisfy a static algebraic relationship that has to be solved).

One might then be tempted to consider the modified compensator

U(s) =
1

sT + 1

(
V (s) +

(
0 D̂12

D̂21 0

)
U(s)

)

For what combinations of T, D̂12 and D̂21 will the compensator be stable? Justify
your answer! (2p)
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4. A multivariable system is described by the model

Y (s) =
1

10s+ 1

(
1− s 1

2 1

)
︸ ︷︷ ︸

G(s)

U(s) +
1

10s+ 1

(
4
7

)
︸ ︷︷ ︸

Gd(s)

D(s)

The system shall be controlled with the aim of keeping |y| < 1 in the presence of
disturbances with |d| < 1 for all frequencies ω.

(a) Determine if G(s) has any fundamental bandwidth limitations (2p)

(b) Use RGA to determine which pairing of inputs and outputs that should be used
in the case of decentralized control. The desired bandwidth is around 1 rad/s.

(3p)

(c) It turns out that the system is uncertain, and the uncertainty can be described
by the model

Gp = G(I + ∆I)

for some ∆I with |∆I(iω)| < |wI(iω)| for all ω. In addition to the disturbance
rejection requirement, you would also like to ensure robust stability of the closed-
loop system.

Find weighted transfer functions M1 and M2 such that the disturbance rejection
and robust stability requirements can be expressed as

‖M1‖∞ < 1

‖M2‖∞ < 1

(5p)
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5. We are given a system with a non-minimum phase zero for s = T :

Y (s) = G(s)U(s) with G(s) =
T − s
1 + s

.

How should the proportional gain Kp in

U(s) = −KpY (s) (3)

be chosen so that the quantity

J =

∫
y2(t) dt

is kept to its minimum?

We will try to address this question using linear-quadratic control theory.

(a) Derive a state-space realization of G(s) on the form

ẋ = Ax+Bu

y = Cx+Du

Explain how you, since C is invertible, can assume access to the system state x
based on a noise-free measurement of y and knowledge of the control signal u
without constructing a standard observer. (2p)

Hint. Since the process has a direct term, it might be useful to observe that one
can re-write the system on the form

Y1(s) = G1(s)U(s)

Y (s) = Y1(s) +DU(s)

for an appropriate strictly proper transfer function G1(s).

(b) Consider the LQ-criterion ∫
y2(t) + ρu2(t) dt.

Derive explicit expressions for the matrices Q1, Q12 and Q2 (in terms of ρ and
the system matrices A, B, C and D) so that this criterion can be re-written as∫

zT (t)Q1z(t) + 2xTQ12u(t) + uTQ2u(t)

where z(t) = Mx(t) = x(t). (2p)
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(c) Derive the optimal state feedback law

u(t) = −Lx(t)

that minimizes the criterion in (b). Derive an explicit expression for where the
closed-loop pole (under the optimal state feedback) is located as ρ→ 0. (5p)

Hint. Note that you do not have to characterize the closed-loop pole location
explicitly for all ρ, only for ρ→ 0.

(d) Use your findings in (a) and (c) to determine the optimal gain Kp in (3) (1p)
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1. (a) The transfer matrix is given by

G(s) = C(sI − A)−1B +D =

 s+ 3α/2

s+ α + 1

α/2− 1

s+ α + 1

0
1

s+ 1


The poles of the system are the eigenvalues of the A matrix. Since the A matrix
is diagonal, we immediately see that the system has poles for s = −1 and
s = −(α + 1). It is, of course, possible to compute the poles from the transfer
matrix, but the result will be the same.

As for the zeros, the maximal minor is the determinant of G(s), and since

detG(s) =
s+ 3α/2

(s+ 1)(s+ α + 1)

the system has a zero for s = −3α/2.

The system is stable when all poles are in the left half plane, i.e. when α > −1.
The system zero will be minimum phase if it is in the left half plane, i.e. if α > 0
(the system will be non-minimum phase if α < 0. Note that when α < −1, the
system is both unstable and has a non-minimum phase zero, and will be difficult
to control.

(b) The system is observable when the observability matrix has full rank. Here,

O =

[
C
CA

]
=


−(α + 1) 0

0 −1
−(α + 1)(α/2− 1) 0

0 1


looses rank if α = −1. For all other values of α, the system is observable.

(c) The singular values are the square roots of the eigenvalues of G(iω)G(iω)∗. We
get

G(iω)G(iω)∗ =
1

iω + 1

[
1 2
0 1

]
1

−iω + 1

[
1 0
2 1

]
=

1

ω2 + 1

[
5 2
2 1

]
We detrmine the eigenvalues by calculating the roots of the characteristic poly-
nomial wich is the determinant of (λI −G(iω)G(iω)∗). We get

λI −G(iω)G(iω)∗ =
1

ω2 + 1

[
(ω2 + 1)λ− 5 −2

−2 (ω2 + 1)λ− 1

]
So we need to find the roots of

λ2 − 6

ω2 + 1
λ+

1

(ω2 + 1)2
= 0
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Solving this yields

λ =
3±
√

8

ω2 + 1

The singular values are given as the root of this and hence they become

σ1,2 =

√
3±
√

8

ω2 + 1

The norm we are looking form is given by

‖G‖∞ = sup
ω
σ̄(G(iω)) = sup

ω

√3 +
√

8

ω2 + 1


Since ω only appear as a square in the denominator we realize that the maxi-
mizing ω is ω = 0 which yield

‖G‖∞ =

√
3 +
√

8
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2. (a) To be able to solve this problem, it is important to recall that scaling all weight
matrices with the same constant does not affect the solution. In other words,
the LQ-optimal controller for the criterion

J =

∫
x(t)TQ1x(t) + u(t)TQ2u(t) dt

is identical to the LQ-optimal controller for the criterion

J2 = κJ =

∫
x(t)TκQ1x(t) + u(t)TκQ2u(t) dt

If this is not immediately clear, then it is straightforward to verify that if P is
the solution to the Riccati equation for J , then κP is the solution to the Riccati
equation of J2. The additional κ is cancelled in the expression for the feedback
gains, implying that the two problems have the same solutions.

Normalizing the weights so that Q2 = 1 for all weight choices, we have

A :Q1 = 1, Q2 = 1 B :Q1 = 100, Q2 = 1
C :Q1 = 0.01, Q2 = 1 D :Q1 = 0.01, Q2 = 1

Using the rule that the larger the penalty on state deviations, the faster the
system response, we see that the correct pairing is A− 1, B − 2 while C and D
correspond to response 3 and 4.

(b) The LQG-optimal controller satisfies a separation principle. The feedback gains
can be computed as if you had full access to the system state, and the estimator
should be designed to minimize the estimation error variance. Hence, there is
no need to re-design the feedback gains, they will be the same as you computed
under the assumption of full state feedback.

(c) Disturbance filters model the frequency content of the disturbance. In this
case, there is one filter , C, with energy concentrated at a distinct frequency
(1 rad/sec ); clearly, this corresponds to response 1. Then there are two first-
order filters, both with unit static gains. However, filter B has a higher band-
width, and hence allows more high-frequency content of v1 to pass through. We
can see that B corresponds to response 3, hence A corresponds to response 2.

(d) The augmented system model has states which represent the process and the
disturbance filter. Thus(

ẋ(t)
ẋd(t)

)
=

(
A 0
0 Ad

)(
x
xd

)
+

(
0
Nd

)
v1 +

(
B
0

)
u

y =
(
C Cd

)( x
xd

)
+ v2

The order of the LQG-controller is the same as the order of the augmented
system, i.e. the number of states of the system model plus the number of states
of the disturbance model.
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3. (a) Y (s) = G(s)U(s) and U(s) = D(s)V (s) yields

Y (s) = G(s)D(s)V (s)

so Y (s) = V (s) implies that G(s)D(s) = I, i.e.

D(s) = G(s)−1 =
s+ 1

1−K12K21

(
1 −K12

−K21 1

)
(b) Similarly, Y (s) = G(s)U(s) and U(s) = D1(s)V (s) yields Y (s) = G(s)D1(s)V (s).

The desire that Y (s) = Q(s)V (s) is satisfied if

D1(s) = G−1(s)Q(s) =
s+ 1

1−K12K21

(
1 −K12

−K21 1

)
1

s+ 1

(
1 0
0 1

)
=

=
1

1−K12K21

(
1 −K12

−K21 1

)
which we can realize (it is a constant matrix) unless K12K21 = 1.

(c) Y (s) = G(s)U(s) and U(s) = V (s) + D̂(s)U(s) implies that

Y (s) = G(s)(I − D̂(s))−1V (s) = Q(s)V (s)

is satisfied if I − D̂(s) = Q−1(s)G(s), i.e. if

D̂(s) = I −Q−1(s)G(s) =

(
0 −G12(s)/G11(s)

−G21(s)/G22(s) 0

)
In other words D̂12(s) = −G12(s)/G11(s), D̂21(s) = −G21(s)/G22(s).

(d) The compensator dynamics is given by

U(s) = (I − 1

sT + 1
D̂)−1

1

sT + 1
V (s) =

=
1

sT + 1

(
1 −D̂12/(sT + 1)

−D̂21/(sT + 1) 1

)−1
V (s) =

=
1

(sT + 1)2 − D̂12D̂21

(
sT + 1 D̂12

D̂21 sT + 1

)
V (s)

and hence stable if T > 0 and D̂12D̂21 < 1.
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4. (a) The system is stable, there are no time delays, and its zero is of minimum phase,
so there is no apparent limitation.

(b) The RGA for zero frequency is

RGA(G(0)) =

(
−1 2
2 −1

)
As pairings never should yield negative diagonal elements, the only possible
pairing is to use u1 to control y2 and to use u2 to control y1.

(c) The performance requirement is that |S(iω)Gd(iω)| < 1 for all frequencies. This
is equivalent to ‖SGd‖∞ < 1.

For robust stability, we can replace the nominal system G in the standard feed-
back set-up in the book by G(I + ∆I). Standard calculations gives that the
small gain theorem guarantees stability if

‖ − (I + FyG)−1FyG‖∞‖∆I‖∞ < 1

SInce |∆I(iω)| < wI(iω)| for all ω, and since wI is a scalar function, we have

| − (I + FyG)−1FyG||∆I | < | − (I + FyG)−1FyG||wI | = | − (I + FyG)−1FyGwI |

So, if we can keep the rightmost quantity below one for all frequencies, the
closed-loop system will be robustly stable.

We have thus found our two transfer functions:

M1 = SGd

M2 = −(I + FyG)−1FyGwI
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5. (a) Noting that we can write

Y (s) =
z − s
1 + s

U(s) =
T + 1

s+ 1
U(s)− U(s) = Y1(s)− U(s)

where

Y1(s) =
T + 1

s+ 1
U(s)

we can represent this system on controllable canonical form

ẋ = −x+ u

y1 = (T + 1)x

and hence, the full system has state-space representation

ẋ = −x+ u

y = (T + 1)x− u

corresponding to A = −1, B = 1, C = (T + 1) and D = −1.

The state-space representation is not unique. One could, for example, also use
A = −1, B = (T + 1), C = 1 and D = −1.

Irrespectively of the state-space representation, since the system is scalar,

x =
1

C
(−Du+ y)

so we can obtain x directly from u and y.

(b) We have∫
y(t)2 + ρu(t)2 dt =

∫
(cx(t) + du(t))2 + ρu(t)2 dt =

=

∫
x(t)c2x(t) + 2x(t)cdu(t) + u(t)(d2 + ρ2)u(t) dt

Identifying z(t) = x(t) we see that

Q1 = c2 = (T + 1)2

Q12 = cd = −(T + 1)

Q2 = d2 + ρ = 1 + ρ

(c) According to Equation (9.15) in the course book, we need to solve the Riccati
equation

ATS + SA+MTQ1M − (SB +Q12)Q
−1
2 (SB +Q12)

T = 0

16



for a postive definite solution S. In our case, we find

−S − S + (T + 1)2 − (S − (T + 1))2

1 + ρ
= 0

We note that ρ → 0 implies that S → 2T and the optimal state feedback gain
tends to

L =
Q12

Q2

= T − 1

The closed loop system is given by

ẋ = (A−BL)x = (−1− (T − 1))x = −Tx

Hence, the closed-loop pole tends to the negative of the zero location, s = −T .

One can show that this observation holds generally true also for higher-order
systems. If a system has non-minimum phase zeros, then to minimize the total
energy in the output, one should place some poles at the zero locations or, if
the zeros are non-minimum phase, at the locations of the zeros mirrored in the
imaginary axis. The rest of the poles could be made arbitrary fast.

Remark. If you chose the alternative state-space representation discussed in (a),
you will get Q1 = 1, Q12 = −1, Q2 = 1 + ρ and the Riccati equation

−2S + 1− (s(T + 1)− 1)2

1 + ρ
= 0

whose positive solution, when ρ→ 0 tends to 2T/(T+1)2, and the corresponding
feedback gain is L = (T − 1)/(T + 1).

(d) From the results in (c) and (a), we have

u = −(T − 1)x = −T − 1

T + 2
(u+ y)⇒ u = −T − 1

2T
y

Hence, the optimal proportional gain is given by Kp = (T − 1)/2T .
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