## Environmental Science, Problems Chapter 2

### 2.1.1

Calculate the speed of light in a medium with refractive index $n=1.52$.
Answer: $1.97 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$

### 2.1.2

A light wave with wavelength 555 nm enters a medium with $n=1.35$. Calculate the wavelength in the medium.
Answer: 411 nm

### 2.1.3

A photon has the wavelength 633 nm . Calculate the energy of the photon in eV .
Answer: 1.96 eV

### 2.2.1

A glowing body has its maximum of intensity at 730 nm . Calculate temperature of the body in K.
Answer: 3970 K

### 2.2.2

The emitted energy per time and area from a body is $e_{0}$ at 300 K . How large is the emitted energy at 400 K ?
Answer: $3.2 \mathrm{e}_{0}$

### 2.4.1

Calculate the velocity of the carbon monoxide molecule if it is found in the atmosphere and if the temperature is $20^{\circ} \mathrm{C}=293 \mathrm{~K}$. The mass of the CO molecule is $12+16 \mathrm{u}=28 \mathrm{u}$, where $1 \mathrm{u}=1.67 \cdot 10^{-27} \mathrm{~kg}$. Apply statistical physics.
Answer: 509 m/s

### 2.4.2

Calculate the velocity of the ozone molecule if it is found near the ground and if the temperature is $25^{\circ} \mathrm{C}=298 \mathrm{~K}$. The mass of the $\mathrm{O}_{3}$ molecule is $3 \cdot 16 \mathrm{u}=48 \mathrm{u}$, where $1 \mathrm{u}=1.67 \cdot 10^{-27} \mathrm{~kg}$. Apply statistical physics.
Answer: 392 m/s

## 2.4 .3

Looking at the development of the concentrations of ozone from 1978 until 2006, one finds a slight decrease in the atmospheric ozone concentration. Find the decrease in concentration in DU year 2006 if we start at 329 DU 1978 and the slope is $-0.07 \%$ annually.
Answer: - 0.020 DU

### 2.7.1

Calculate the wavelength maximum if the mean temperature of the Earth has increased to $20^{\circ} \mathrm{C}$.
Answer: $9.9 \mu \mathrm{~m}$

### 2.7.2

Calculate the total emitted radiation if the mean temperature of the Earth has increased to $20^{\circ} \mathrm{C}$.
Answer: 420 W/m ${ }^{2}$

