Environmental Science, Problems Chapter 4

4.1

Assuming a CO_{2} volume fraction of 350 ppmv , calculate the weight fraction of CO_{2}. The average density of air is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$ and the density of CO_{2} is $1.98 \mathrm{~kg} / \mathrm{m}^{3}$ (STP).

Solution:

$$
\begin{gathered}
m_{\mathrm{CO}_{2}}=\rho_{\mathrm{CO}_{2}} * V_{\mathrm{CO}_{2}} \\
m_{\text {air }}=\rho_{\text {air }} * V_{\text {air }} \\
\left.m_{\mathrm{CO}_{2}} / m_{\text {air }}=1.98 * 350 * 10^{-6} / 1.29=537 \quad \text { ppm } \quad \text { (weight }\right)
\end{gathered}
$$

Answer: 537 ppm (weight)

4.2

The seasonal variations in atmospheric CO_{2} amount to about 4 ppmv. Estimate the total volume needed to store this amount of CO_{2} in liquid phase (density $770 \mathrm{~kg} / \mathrm{m}^{3}$).

Solution:

$$
\begin{gathered}
m_{\mathrm{CO}_{2}}=750 \quad \text { Gton }=7.5 * 10^{14} \quad \mathrm{~kg} \\
\text { Variation }=\frac{4}{350} * 7.5 * 10^{14} \quad \mathrm{~kg}=8.6 * 10^{12} \quad \mathrm{~kg} \\
V=8.6 * 10^{12} / 770=1.1 * 10^{10} \quad \mathrm{~m}^{3}=1.1 * 10^{4} \quad \mathrm{~km}^{3}
\end{gathered}
$$

(This is about the same as the volume of Lake Superior)
Answer: $1.1 * 10^{4} \mathrm{~km}^{3}$

