Environmental Science, Problems Chapter 3

3.1

Calculate the albedo a, if the mean temperature of the Earth is 298 K, the value of f is 0.61, $\sigma = 5.671 \cdot 10^{-8} \text{ W/m}^2 \text{K}^4$, $S = 1367 \text{ W/m}^2$ and use the equation

$$(1-a)\frac{S}{4} = f\sigma T^4.$$

Answer: a = 0.20

3.2

Calculate the incoming solar intensity S, if the mean temperature of the Earth is 288 K, the value of f is 0.61, $\sigma = 5.671 \cdot 10^{-8} \text{ W/m}^2 \text{K}^4$, a = 0.30 and use the equation

$$(1-a)\frac{S}{4} = f\sigma T^4$$

Answer: 1.4 kW/m^2

3.3

Calculate the mean temperature T_2 of the Earth if the *f*-value changes from 0.61 when the temperature is $T_1 = 288$ K to f = 0.65 at T_2 . We have $\sigma = 5.671 \cdot 10^{-8}$ W/m²K⁴ and a = 0.30. Apply the equation

$$f\sigma T^4 = constant.$$

Answer: 280 K

$\mathbf{3.4}$

Light with intensity 10 W/m² is absorbed in a gas. The light travels 85 cm in the gas and the absorption coefficient is $\mu = 0.23 \text{ m}^{-1}$. How large is the intensity *I*, after the light has traveled the 85 cm. Apply the equation

 $I = I_0 e^{-\mu x}$

to calculate I. Answer: 8.2 W/m²

3.5

Light with intensity 10 W/m² is absorbed in a gas. The light travels a distance in the gas and the absorption coefficient is μ . The intensity is 6.2 W/m² after it has passed 15 cm through the gas. Apply the equation

$$I = I_0 e^{-\mu x}$$

to calculate μ . Answer: 3.2 m⁻¹

3.6

Radiative forcing is given by

$$\Delta I = \Delta t \sigma T^4.$$

The transmission decreases from 0.61 to 0.60. Find the reduction of the radiative forcing when T = 287.9 K and $\sigma = 5.671 \cdot 10^{-8}$ W/m²K⁴. Answer: 0.39 W/m²

3.7

Radiative forcing can be given by

$$\Delta T = G \Delta I$$

where G is the gain factor. Calculate the gain factor if ΔI is 18 W/m² and ΔT is 4.5 K. Answer: 0.25 K/Wm²