Environmental Science, Problems Chapter 5

5.1

The pressure p of the atmosphere decreases with height z above the ground. Suppose we are on the ground and the pressure is $p_{0}=1000 \mathrm{hPa}$. At $z=30$ km the pressure is 10 hPa . Determine the constant H in the pressure equation

$$
p=p_{0} e^{-z / H}
$$

Answer: $\mathrm{H}=6.5 \mathrm{~km}$

5.2

The pressure p of the atmosphere decreases with height z above the ground. Suppose we are on the ground and the pressure is $p_{0}=1000 \mathrm{hPa}$. At what height will the pressure be half of that? The constant $H=6515 \mathrm{~m}$ in the pressure equation

$$
p=p_{0} e^{-z / H}
$$

Answer: $\mathrm{z}=4.5 \mathrm{~km}$

5.3

The temperature t of the stratosphere increases with height z above the ground from $-60{ }^{\circ} \mathrm{C}$ at 25 km to $-10{ }^{\circ} \mathrm{C}$ at 50 km . Suppose we have a temperature equation

$$
t=t_{0}(1-k \Delta z)
$$

Here Δz stands for the difference in height. Determine the constant k.
Answer: $\mathrm{k}=0.033 \mathrm{~km}^{-1}$

5.4

The temperature t of the stratosphere increases with height z above the ground. At 25 km we have the temperature $-60{ }^{\circ} \mathrm{C}$. Suppose we have a temperature equation

$$
t=t_{0}(1-k \Delta z)
$$

where Δz stands for the difference in height. Determine the temperature at 40 km . The constant $k=0.033 \mathrm{~km}^{-1}$.
Answer: $\mathrm{t}=-\mathbf{3 0}{ }^{\circ} \mathrm{C}$

5.5

A large volume $\left(1 \mathrm{~km}^{3}\right)$ of the wind (density $0.5 \mathrm{~km} / \mathrm{m}^{3}$ at a particular height) is moving at a speed of $120 \mathrm{~m} / \mathrm{s}$ in the South-North direction over Marseille (latitude 43°). Calculate the Coriolis force on the volume. The angular velocity is $7.27 \cdot 10^{-5} \mathrm{rad} / \mathrm{s}$.
Answer: $6 \cdot 10^{6} \mathrm{~N}$

