Environmental Science, Solutions Chapter 5

5.1

With the equation $p = p_0 e^{-z/H}$ we get

$$10 = 1000e^{-30000/H} \Rightarrow \ln\left(\frac{10}{1000}\right) = -\frac{30000}{H} \Rightarrow -4.605 = \frac{30000}{H} \Rightarrow H = \frac{30000}{4.605} \text{ m} \approx 6.5 \text{ km}$$

Answer: H = 6.5 km

5.2

With the equation $p = p_0 e^{-z/H}$ we get

$$500 = 1000e^{-z/6515} \Rightarrow \ln\left(\frac{500}{1000}\right) = -\frac{z}{6515} \Rightarrow -0.693 = -\frac{z}{6515} \Rightarrow z = 0.693 \cdot 6515 \text{ m} \approx 4.5 \text{ km}.$$

Answer: z = 4.5 km

5.3

With the equation $t = t_0 (1 - k\Delta z)$ we get

$$-10 = -60 \left(1 - k \left(50 - 25 \right) \right) \Rightarrow \frac{-10}{-60} = 1 - k \cdot 25 \Rightarrow k = \frac{1 - \frac{1}{6}}{25} \,\mathrm{km}^{-1} \approx 0.033 \,\mathrm{km}^{-1}.$$

Answer: $k = 0.033 \text{ km}^{-1}$

5.4

With the equation $t = t_0 (1 - k\Delta z)$ and k = 0.033 km⁻¹ we get

$$t = -60 (1 - 0.033 (40 - 25)) \Rightarrow t = -30 \, ^{\circ}\text{C}$$

Answer: t = -30 °C

5.5

The mass of the wind is $m = \rho V$ and the Coriolis force is given by

 $F_C = 2mu\Omega sin\theta = 2\rho Vu\Omega sin\theta = 2\cdot 0.5\cdot 1000^3\cdot 120\cdot 7.27\cdot 10^{-5}sin43^o \text{ N} = 5.95\cdot 10^6 \text{ N} \approx 6\cdot 10^6 \text{ N}$

Answer: $6 \cdot 10^6$ N