Environmental Science, Problems Chapter 7

7.1

We have a solar absorber where water is circulating at a flow of $\Phi=15 \mathrm{~cm}^{3} / \mathrm{s}$. The area of the absorber is $5.0 \mathrm{~m}^{2}$. One measures the incoming power to $Q_{\text {in }}=390 \mathrm{~W} / \mathrm{m}^{2}$. Calculate the temperature increase of the water after passing the absorber. $C_{P}=4.18 \cdot 10^{3} \mathrm{~J} / \mathrm{kgK}$. You can assume that $1 \mathrm{~cm}^{3}$ of water weighs 1 g .

The temperature difference can be calculated using:

$$
\Delta T=\frac{Q_{\mathrm{in}} A}{C_{P} \Phi}=\frac{390 \cdot 5.0}{4.18 \cdot 10^{3} \cdot 15 \cdot 10^{-3}} \mathrm{~K}=31.1 \mathrm{~K} \approx 31 \mathrm{~K}
$$

Answer: $31^{\circ} \mathrm{C}$ or 31 K

7.2

There is a wind blowing with at velocity of $u=12 \mathrm{~m} / \mathrm{s}$. Calculate the power of the wind per m^{3}.

Using $P_{\text {wind }}=T_{\text {wind }} \cdot u=\frac{1}{2} \rho \cdot u^{3}=\frac{1}{2} \cdot 1.2 \cdot 12^{3} \mathrm{~W} / \mathrm{m}^{3}=1.04 \mathrm{~kW} / \mathrm{m}^{3}$
Answer: $1.0 \mathrm{~kW} / \mathrm{m}^{3}$

7.3

There is a strong wind blowing with the power of $1.0 \mathrm{~kW} / \mathrm{m}^{2}$. A windmill with a large rotator is used to produce electricity. Calculate the maximum power of the windmill per m^{2}.

Using $P_{\text {exctr }}=P_{\text {wind }} \cdot \frac{16}{27}=10^{3} \cdot \frac{16}{27} \mathrm{~kW} / \mathrm{m}^{2}=593 \mathrm{~W} / \mathrm{m}^{2}$
Answer: 0.59 kW $/ \mathrm{m}^{2}$

7.4

There is a waterfall where the flow is $100 \mathrm{~m}^{3} / \mathrm{s}$ and falling height of 55 m . Calculate the maximum power.

Using $P=\frac{\rho V g h}{t}=1000 \cdot 100 \cdot 9.82 \cdot 55 \mathrm{~W}=54 \mathrm{MW}$
Answer: 54 MW

7.5

A wind is blowing over the Atlantic Ocean where the period of the waves is around 10 s . One finds that some large waves have a height of 12 m . Calculate the maximum power of the waves per meter.

Applying $P \approx 0.5 \cdot H^{2} T \mathrm{~kW}=0.5 \cdot 12^{2} \cdot 10 \mathrm{~kW} / \mathrm{m}=720 \mathrm{~kW} / \mathrm{m}$

Answer: 720 kW/m

7.6

A wind is blowing over the Atlantic Ocean where the period of the waves is T. One finds that some large waves have a height of $H \mathrm{~m}$. Later, one observes waves with a maximum height of $2 H$. Estimate how much the power has increased.

The power per meter is $P=0.5 \cdot H^{2} \cdot T \mathrm{~kW} / \mathrm{m}$. Hence, with $H_{2}=2 H$ we get $P_{2}=0.5 \cdot(2 H)^{2} \cdot \mathrm{~kW} / \mathrm{m}=2^{2} P=4 P$, i.e. the power is now 4 times higher.

Answer: 4 times higher

7.7

Looking at nuclear power we try to estimate the energy we can obtain from 1.0 gram of ${ }^{235} \mathrm{U}$. Use the Einstein mass relation $E=m c^{2}$.

The energy is given by $E=m c^{2}=10^{-3} \cdot\left(3.00 \cdot 10^{8}\right)^{2} \mathrm{~J}=90 \cdot 10^{12} \mathrm{~J}$

Answer: 90 TJ

7.8

Looking at nuclear power we try to estimate the energy we can obtain from a proton with mass $1.67 \cdot 10^{-27} \mathrm{~kg}$. Use the Einstein mass relation $E=m c^{2}$.

The energy is given by $E=m c^{2}=1.67 \cdot 10^{-27} \cdot\left(3.00 \cdot 10^{8}\right)^{2} \mathrm{~J}=0.15 \cdot 10^{-9} \mathrm{~J}$
Answer: $1.5 \cdot 10^{-10} \mathrm{~J}=0.15 \mathrm{~nJ}$

