Basic Waves and Optics

1. Electromagnetic Waves

The electromagnetic wave consists of oscillating electric (\vec{E}) and magnetic (\vec{B}) fields. The electromagnetic spectrum is formed by the various possible frequencies ($\omega=2 \pi f$) of the electromagnetic waves. An electromagnetic wave has an electric field \vec{E} and a magnetic field \vec{B} travelling along the positive x -axis and depends on x and t :

$$
E=E_{0} \sin (k x-\omega t) \text { and } B=B_{0} \sin (k x-\omega t) .
$$

The speed of an electromagnetic wave in vacuum can be written as

$$
c=\frac{E}{B}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} \quad c=f \lambda
$$

2. Energy flow

The so-called Poynting's vector, the rate at which energy is transported is given by

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

The intensity (I) of a wave $\left[\mathrm{W} / \mathrm{m}^{2}\right]$ is written by

$$
I=\frac{1}{c \mu_{0}} \frac{E_{0}^{2}}{2}=\frac{1}{c \mu_{0}} E_{R M S}^{2}, \text { where } E_{R M S}=\frac{E_{0}}{\sqrt{2}}
$$

The intensity of a wave at distance r from a point source is given by

$$
I=\frac{P}{4 \pi r^{2}}
$$

3. Radiation pressure

An electromagnetic wave that hits a surface (area A), exerts a force (F) and a pressure on the surface according to

$$
F=\frac{I A}{c} \text { (Total absorption) }
$$

If the radiation is totally reflected we have

$$
F=\frac{2 I A}{c} \text { (Total reflection backwards) }
$$

The corresponding radiation pressures will then be

$$
p=\frac{I}{c} \text { and } p=\frac{2 I}{c} \text { respectively }
$$

4. Polarization

The electromagnetic waves are polarized if their filed vectors are all in a single plane. Light waves from ordinary sources are not polarized; that is, they are unpolarized or randomly polarized.

A polarization sheet, a Polaroid, can make unpolarized light become polarized, with the intensity

$$
I=\frac{1}{2} I_{0}
$$

Malu's law: If the original light is polarized linearly, the transmitted light through a Polaroid tilted an angle θ between the polarization direction of the incoming beam and the polarization direction of the Polaroid, we have

$$
I=I_{0} \cos ^{2} \theta
$$

Polarization by reflection, Brewster angle $\boldsymbol{\theta}_{\boldsymbol{p}}$

$$
\tan \theta_{p}=\frac{n_{2}}{n_{1}}
$$

A reflected wave will be fully polarized with its E-vectors perpendicular to the plane of incidence if it hits the boundary at the Brewster angle, θ_{p}.

5. Geometrical Optics

Snell's law: The refractive index, $n=\frac{c}{v}$, for a material, is defined as the factor with which the speed of light in vacuum is reduced, when entering the material. This causes the light to change direction according to Snell's law.

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

Total internal reflection, critical angle θ_{c} :

$$
\sin \theta_{c}=\frac{n_{2}}{n_{1}}
$$

Example.

Let the angle of incidence be θ within the fiber at reflection against the mantle. Determine the crucial angle θ_{c} for total reflection. Let $\mathrm{n}_{1}=1,53$ and $\mathrm{n}_{2}=1,28$.

Solution

Snells' law with the angle of refraction $\beta=90^{\circ}$ gives:
$1,53 \sin \theta_{c}=1,28 \sin 90^{\circ}$
$\sin \theta_{c}=0,8366$
$\theta_{\mathrm{c}}=56,9^{\circ}$

6. Fresnel formulae for reflection and transmission

Here we have split the electromagnetic field into two components, E_{\perp} and $E_{\text {II }}$. The coefficients describing the reflected and transmitted parts can be seen in the picture to the right. $\mathrm{R}=\mathrm{r}_{/ /}{ }^{2}$ gives the coefficient of reflection.

Example

At an angle of incidence $\theta_{i}=50^{\circ}$ and refractive angle of $\theta_{\rho}=30^{\circ}$ we have $\mathrm{R}_{/ /}=\left(\frac{\tan (50-30)}{\tan (50+30)}\right)^{2}=0,4 \%$ The normal component has the coefficient $R_{\perp}=\left(\frac{\sin (50-30)}{\sin (50+30)}\right)^{2}=12 \%$. The rest of the light is then transmitted; $\mathrm{T}=\mathrm{T}_{/ /}+\mathrm{T}_{\perp}=87,6 \%$.

7. Lens equations

Gaussian lens equation
$\frac{1}{a}+\frac{1}{b}=\frac{1}{f}$

Newton lens equation

$$
x y=f^{2}
$$

, where $x=f-a$ and $y=f-b$

Real and virtual images

An image can be seen as a reproduction of an object via light and if the image can be formed on a surface, it is a real image. If the image requires the visual system of an observer, it is a virtual image.

8. Spherical mirror equation

$\frac{1}{a}+\frac{1}{b}=\frac{1}{f}=\frac{2}{r}$
, where r is the radius of a spherical mirror

9. Spherical refracting surfaces

$$
\frac{n_{1}}{a}+\frac{n_{2}}{b}=\frac{n_{2}-n_{1}}{R}
$$

10. Thin lenses

$$
\frac{1}{a}+\frac{1}{b}=\frac{1}{f}=\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

11. Magnification

The lateral magnification by a thin lens or spherical mirror is

$$
m=-\frac{b}{a}
$$

The magnitude of m is given by

$$
|m|=\frac{H}{h}
$$

, where H is the height of the image and h of the object.

12. Optical instruments

A simple magnifying lens produces an angular magnification given by

$$
m_{\theta}=\frac{\gamma}{f}=\frac{25 \mathrm{~cm}}{f}
$$

$\gamma=25 \mathrm{~cm}$ is the distance for clear seeing
A compound microscope produces a total magnification M given by

$$
M=m m_{\theta}=-\frac{s}{f_{\text {obj }}} \frac{\gamma}{f_{\text {eye }}}
$$

, where s is the tube length, and $f_{\text {obj }}$ and $f_{\text {eye }}$ are the focal widths of the objective and eyepiece.

A refracting telescope produces an angular magnification m_{θ} of

$$
m_{\theta}=-\frac{f_{o b j}}{f_{e y e}}
$$

13. Huygens' principle

All points of a wavefront serve as a point sources for secondary wavelets.

14. Wavelength and refractive index

The wavelength λ_{n} of a wave in a medium with refractive index n is related to the wavelength in vacuum λ by

$$
\lambda_{n}=\frac{\lambda}{n}
$$

15. Interference

Young's double slit experiment

$$
d \sin \theta=m \lambda \quad \text { Maxima for } m=0,1,2,3, \ldots
$$

Coherence

It two waves at a point will interfere, they have to be coherent, i.e. their phase difference has to be constant in time.

The double slit intensity

$$
I=4 I_{0} \cos ^{2} \frac{\phi}{2}, \text { where } \phi=\frac{2 \pi d}{\lambda} \sin \theta
$$

Interference in thin films

Optical path difference + phase difference = Condition for maximum

$$
2 n_{2} d \cos \beta+(0-\lambda / 2)=m \lambda
$$

If normal incidence $(\theta=0)$, we have: $2 n_{2} d=(m-1 / 2) \lambda, m=0,1,2, \ldots$

16. Diffraction

Single-slit diffraction

Diffraction Minima occurs when $a \sin \theta=m \lambda, m=1,2,3, \ldots$

Single slit intensity

$I=I_{0}\left(\frac{\sin \alpha}{\alpha}\right)^{2}$ where $\alpha=\frac{\pi a}{\lambda} \sin \theta$ and I_{0} is the intensity at the pattern centre

Rayleigh's criterion

First maximum for circular apertures with diameter D

$$
\theta_{c}=1.22 \frac{\lambda}{D}
$$

Diffraction gratings

Maxima occur when $n \lambda=d \sin \theta$ and $n=1,2,3, \ldots$ is the order, d is the slit width

Resolving power $R=\frac{\lambda}{\Delta \lambda}=N n$, where N is the total number of grooves Dispersion $\frac{d \theta}{d \lambda}=\frac{n}{d \cos \theta}$

Links:

http://www.biox.kth.se/Education/gm/bok/inledning/index.htm http://hyperphysics.phyastr.gsu.edu/hbase/geoopt/lenscon.html\#c1

