Environmental Science II

Problems Chapter 1

1.1.1 A sound wave is moving according to $y = A \cos(kx - \omega t)$. The amplitude is 0.034 μ m and the period T = 5.2 ms. Calculate the maximum particle speed.

Solution

Applying the formula $\omega = 2\pi/T$ we get the angular velocity ω . If we take the derivative of the equation y = A cos (*kx*- ωt) and look for the maximum we get v_{ymax} = A ω = 0.034x10⁻⁶ x $2\pi/5.2x10^{-3}$ m/s = 41 μ m/s.

Answer: 41 μ m/s

1.1.2 A sound wave is moving according to $y = A \cos (kx - \omega t)$. The amplitude is 0.034 μ m and the period T = 5.2 ms. Calculate the maximum particle acceleration.

Solution

Applying the formula $\omega = 2\pi/T$ we get the angular velocity ω . If we take the derivative, twice of the equation $y = A \cos (kx - \omega t)$ and look for the maximum we get $a_{ymax} = A\omega^2 = 0.034 \times 10^{-6} \times (2\pi/5.2 \times 10^{-3})^2 \text{ m/s}^2 = 0.0496 \text{ m/s}^2 = 50 \text{ mm/s}^2$.

Answer: 50 mm/s²

1.7.1

Let us compare the ability to isolate of Mineral wool (Mineralull) and Glass wool (Glasull). How much better is Glass wool compared to Mineral wool?

Solution

From the tables we find that k = 0.038 for Mineral wool and for Glass wool k = 0.036 W/mK. We get 0.038/0.036 = 1.05556 = 100%+5.6%.

Answer: 5.6% better

1.7.2 If we want to build a wall using either Mineral wool (Mineralull) or Cell plastic (cellplast). How much thicker must the wall be if we use Mineral wool instead of Cell plastic?

Solution

The heat conductivity coefficients are 0.038 W/m K and 0.014 W/m K. The thickness of Mineral wool must be 0.038/0.014 = 2.7 times larger.

Answer: 2.7 times thicker

1.7.2

Looking at a house with a total area of is 240 m² (windows included), while the area of the windows is 30 m². Let us use the Swedish building classification. If we change

all the windows of the house and use windows with U = 1.9 instead of windows with U = 2.9, calculate the change in U-value for the house. (If we change U-values of the windows by a factor a, we can say that we change the area of the windows by the same factor a).

Solution

The Swedish building classification describes the U-value of the house as: $U_{house} = 0.18 + 0.95$ (Awindows/Atotal) [W/m²K]. We have with areas 30 m² and 240 m². Thus $U_{house} = 0.18 + 0.95$ (30/240) W/m²K = 0.299 W/m²K. If we use the other windows we get $U_{house} = 0.18 + 0.95$ (30(1.9/2.9)/240) W/m²K = 0.258 W/m²K. The U-value reduction becomes =1- 0.258/0.299 = 1- 0.863 = 14%.

Answer: 14%

1.7.3 If we want to have value of U = 0.25 W/ m²K of a roof, using glass wool, how thick would the layer of isolation be?

Solution

Glass wool has k = 0.036 W/m K and with k = U d, we get d = k/U = 0.034/0.25 m = 1.4 dm.

Answer: 1.4 dm

1.7.4 If we want to have value of U = 0.25 W/ m²K of a roof, using cell plastic, how thick would the layer of isolation be?

Solution

Glass wool has k = 0.014 W/m K and with k = U d, we get d = k/U = 0.014/0.25 m = 5.6 cm.

Answer: 5.6 cm