Environmental Science II

Problems Chapter 3

3.2.1 The refractive index n depends on the wavelength of the light according to the formula $n=A+B / \lambda^{2}$. For quartz $n=1.46$ at 589.3 nm . If $A=1.30$, calculate the value of B.

Solution

Applying the formula $n=A+B / \lambda^{2}$ we obtain $1.46=1.30+B /\left(589.3 \times 10^{-9}\right)^{2}$. This gives
$B=\left(589.3 \times 10^{-9}\right)^{2}(1.46-1.30) \mathrm{m}^{2}=5.46 \times 10^{-14} \mathrm{~m}^{2}$.
Answer: $B=5.46 \times 10^{-14} \mathrm{~m}^{2}$
3.2.2 Using the above result, what is the refractive index at the He-Ne laser wavelength of 632.8 nm ?

Solution

Applying the formula $n=A+B / \lambda^{2}$ we obtain
$n=1.30+5.46 \times 10^{-14} /\left(632.8 \times 10^{-9}\right)^{2}=1.436$
Answer: $\mathrm{n}=1.436$
3.2.2 Using the result from 2.1.1, what is the refractive index at the frequency tripled YAG laser wavelength of 354.7 nm ?

Solution

Applying the formula $n=A+B / \lambda^{2}$ we obtain
$n=1.30+5.46 \times 10^{-14} /\left(354.7 \times 10^{-9}\right)^{2}=1.734$
Answer: $\mathrm{n}=1.734$
3.3.1 If we look at the Sun using a Polaroid the intensity S is reduced to the half. Calculate the electric field amplitude (E_{0}) after the Polaroid, if $S=1.38 \mathrm{~kW} / \mathrm{m}^{2}$.

Solution

Applying the formula $S_{\text {mean }}=E_{0} B_{0} / 2 \mu_{0}$ where $B_{0}=E_{0} / c$ we get $S_{\text {mean }}=E_{0} E_{0} / 2 c \mu_{0}=$ $E_{0}{ }^{2} / 2 c \mu_{0}$. This gives $1.38 \times 10^{3} / 2=E_{0}{ }^{2} /\left(2 \times 3.00 \times 10^{8} \times 4 \pi \times 10^{-7}\right)$ and $E_{0}=721 \mathrm{~V} / \mathrm{m}$.

Answer: $E_{0}=721 \mathrm{~V} / \mathrm{m}$

