Environmental Science II

Problems Chapter 3

3.2.1 The refractive index *n* depends on the wavelength of the light according to the formula $n = A + B/\lambda^2$. For quartz n = 1.46 at 589.3 nm. If A = 1.30, calculate the value of *B*.

Solution

Applying the formula $n = A + B/\lambda^2$ we obtain 1.46 = 1.30 + $B/(589.3 \times 10^{-9})^2$. This gives

 $B = (589.3 \times 10^{-9})^2 (1.46 - 1.30) \text{ m}^2 = 5.46 \times 10^{-14} \text{ m}^2.$

Answer: *B* = 5.46x10⁻¹⁴ m²

3.2.2 Using the above result, what is the refractive index at the He-Ne laser wavelength of 632.8 nm?

Solution

Applying the formula $n = A + B/\lambda^2$ we obtain $n = 1.30 + 5.46 \times 10^{-14} / (632.8 \times 10^{-9})^2 = 1.436$

Answer: n = 1.436

3.2.2 Using the result from 2.1.1, what is the refractive index at the frequency tripled YAG laser wavelength of 354.7 nm?

Solution

Applying the formula $n = A + B/\lambda^2$ we obtain $n = 1.30 + 5.46 \times 10^{-14} / (354.7 \times 10^{-9})^2 = 1.734$

Answer: n = 1.734

3.3.1 If we look at the Sun using a Polaroid the intensity S is reduced to the half. Calculate the electric field amplitude (E_0) after the Polaroid, if S = 1.38 kW/m².

Solution

Applying the formula $S_{\text{mean}} = E_0 B_0 / 2\mu_0$ where $B_0 = E_0 / c$ we get $S_{\text{mean}} = E_0 E_0 / 2c\mu_0 = E_0^2 / (2x3.00 \times 10^8 \times 4\pi \times 10^{-7})$ and $E_0 = 721 \text{ V/m}$.

Answer: *E*⁰ = 721 V/m