Homework \# 9

1. Let $A, B, C \in M_{n}$ and show that the equation $A X B=C$ has a unique solution $X \in M_{n}$ for every C if and only if both A and B are nonsingular. If either A or B is singular, show that there is a solution X if and only if $\operatorname{rank}\left[B^{T} \otimes A\right]=\operatorname{rank}\left\{\left[B^{T} \otimes A \quad \operatorname{vec}(C)\right]\right\}$.
2. In, for example, the problem of estimating covariance matrices for wireless communication channels the following matrix optimization problem has appeared. Let $A \in M_{p q}$ be a given matrix. We want to find matrices $X \in M_{p}$ and $Y \in M_{q}$ whose Kronecker product approximates A as well as possible in the Frobenius norm; that is, we want to find solutions to

$$
\min _{X, Y}\|A-(X \otimes Y)\|_{F}^{2}
$$

Show that this can be reformulated as a rank-one approximation problem

$$
\min _{x, y}\left\|B-x y^{*}\right\|_{F}^{2}
$$

where x, y are vectors and B is a matrix independent of x, y. The solutions of the former problem should be given from the solutions of the latter, which can be obtained from the SVD of B.
Hints: Notice that there exists a permutation matrix P such that vec $(X \otimes$ $Y)=P[\operatorname{vec}(X) \otimes \operatorname{vec}(Y)]$. Also notice that $\operatorname{vec}\left(a b^{T}\right)=b \otimes a$ for vectors a, b.
3. Recall that the Moore-Penrose pseudo inverse for a full column rank real matrix can be written as $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$. Assume now that A depends on some parameter x (real scalar). Derive an expression for $d A^{\dagger} / d x$ in terms of $d A / d x$.
4. Let A, B, X be real matrices of appropriate dimensions. Derive

$$
\frac{\partial \operatorname{tr}\left(A X B X^{T}\right)}{\partial X}
$$

